Solutions of Laplace's Equation and others in Spherical Co-ordinates

$$\nabla^{2}V = 0 \qquad \text{Laplace's Equation}$$

$$\nabla^{2}V = \frac{1}{c^{2}}\frac{\partial^{2}V}{\partial t^{2}} \qquad \text{Wave Equation}$$

$$\nabla^{2}V = \frac{1}{K}\frac{\partial V}{\partial t} \qquad \text{Diffusion Equation}$$

$$\nabla^{2}\psi + \{l - v(x, y, z)\}\psi = 0 \quad \text{Wave Mechanics Equation}$$

$$\nabla^{2} = \frac{1}{r^{2}}\frac{\partial}{\partial r}r^{2}\frac{\partial}{\partial r} + \frac{1}{r^{2}\sin\theta}\frac{\partial}{\partial\theta}\sin\theta\frac{\partial}{\partial\theta} + \frac{1}{r^{2}\sin^{2}\theta}\frac{\partial^{2}}{\partial\phi^{2}}$$

Axially Symmetric Solutions of $\nabla^2 V = 0$ $\frac{1}{R} = \frac{1}{|\vec{r} - \vec{r_0}|}$ is a solution of Laplaces equation in the coordinates x, y, z.

We have $\nabla^2 \left(\frac{1}{R} \right) = 0$ and so $\frac{\partial^n}{\partial c^n} \nabla^2 \frac{1}{r} = 0$ or $\nabla^2 \frac{\partial^n}{\partial c^n} \frac{1}{R} = 0$ i.e. $\frac{1}{n!} \frac{\partial^n}{\partial c^n} \left(\frac{1}{\underline{R}}\right)$ is a solution of Laplaces equation and in particular $\frac{1}{n!} \left\lceil \frac{\partial^n}{\partial c^n} \left(\frac{1}{R} \right) \right\rceil$ is a solution.

[N.B. $\frac{\partial}{\partial c}(\frac{1}{R}) = -\frac{\partial}{\partial z}(\frac{1}{R})$ and so $\left[\frac{\partial^n}{\partial c^n}(\frac{1}{r})\right]_{c=0} = (-1)^n \frac{\partial^n}{\partial z^n} \frac{1}{r}$ i.e. the above solution can be written $\frac{(-1)^n}{n!} \frac{\partial^n}{\partial c^n} \frac{1}{r}$]

$$\frac{1}{R} = \frac{1}{[(r - ce^{i\theta})(r - ce^{-i\theta})]^{\frac{1}{2}}}$$
 and $(r - ce^{i\theta})^{-\frac{1}{2}}$ has a power series expansion

in powers of c, which is absolutely convergent for $\left|\frac{ce^{i\theta}}{r}\right| < 1$ i.e. for $\frac{|c|}{r} < 1$ when θ is real.

Similarly for $(r - ce^{-i\theta})^{-\frac{1}{2}}$. Therefore $\frac{1}{R} = \frac{1}{(r - ce^{i\theta})^{\frac{1}{2}}(r - ce^{-i\theta})^{\frac{1}{2}}}$ has a power series expansion in c

which is also convergent for $\frac{|c|}{c}$ < 1 (θ real) and the coefficient of c^n is

$$\frac{1}{n!} \left[\frac{\partial^n}{\partial c^n} \frac{1}{R} \right]_{c=0}.$$

Therefore the coefficient of c^n in the above expansion of $\frac{1}{R}$ in powers of c is a solution of Laplace's equation

$$\frac{1}{R} = \frac{1}{r \left[1 - \frac{2c}{r}\cos\theta + \frac{c^2}{r^2}\right]^{\frac{1}{2}}} \text{ and so } \frac{1}{R} = \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{c}{r}\right)^n P_n(\cos\theta) \text{ for } \frac{|c|}{r} < 1 \text{ and}$$

Thus $\frac{P_n(\cos \theta)}{r^{n+1}}$ is a solution of Laplace's equation and is axially symmetric. Similarly, by considering the expansion of $\frac{1}{R}$ for positive powers of $\frac{1}{c}$ with |c| > r, θ real, we find that $r^n P_n(\cos \theta)$ is also an axially symmetric solution.

Alternative Argument

If V is a solution of $\nabla^2 V = 0$, homogeneous and of degree n, then $\frac{V}{r^{2n+1}}$ is also a solution of $\nabla^2 V = 0$ of degree -(n+1).

Proof

$$\nabla^{2}Vr^{m} = r^{m} \nabla^{2}V + V \nabla^{2}r^{m} + 2\vec{\nabla}V\vec{\nabla}r^{m} = r^{m} \nabla^{2}V + Vm(m+1)r^{m-2} + 2mr^{m-1}\frac{\partial V}{\partial r}$$

and since V is homogeneous of degree n, $r\frac{\partial V}{\partial r} = nV$. So if $\nabla^2 V = 0$, then $\nabla^2 V r^m = r^{m-2} [m(m+1) + 2mn] V = 0 \text{ if } m = 0, -2n - 1.$

From
$$\frac{1}{(r^2+c^2-2rc\cos\theta)^{\frac{1}{2}}} = \frac{1}{r} \sum_{n=0}^{\infty} \left(\frac{c}{r}\right)^n P_n(\cos\theta) \qquad (|c| < r, \ \theta \text{ real})$$
Putting $r=1, \ c=h, \cos\theta=\mu$, we have the definition of the P_n 's.

$$\frac{1}{(1 - 2\mu h + h^2)\frac{1}{2}} = \sum_{n=0}^{\infty} h^n P_n(\mu) \qquad (|h| < 1, \mu \text{ real } -1 \le \mu \le 1)$$

This expansion is valid for all h and μ , where $|h| < |\mu \pm (\mu^2 - 1)^{\frac{1}{2}}|$, since

$$(\mu + (\mu^2 - 1)\frac{1}{2} - h)(\mu - (\mu^2 - 1)\frac{1}{2} - h) = 1 - 2\mu h + h^2$$

Properties of $P_n(\mu)$

1) $P_n(\mu)$ is a polynomial in μ of degree n, in alternate powers $n, n-2, \dots 1$ or 0. i.e. $P_{2n}(\mu)$ contains even powers and is an even function. $P_{2n+1}(\mu)$ contains odd powers and is an odd function.

2)
$$P_n(1) = 1$$
 $P_n(-1) = (-1)^n$

3)
$$|P_n(\mu)| \le 1$$
 $-1 \le \mu \le 1$

4) Legendre's Equation $P_n(\mu) \text{ is a solution of } \frac{d}{d\mu}(1-\mu^2)\frac{d}{d\mu}w + n(n+1)w = 0$

5) Orthogonal Properties

$$\int_{-1}^{1} P_n(\mu) P_m(\mu) d\mu = \begin{cases} 0 & m \neq n \\ \frac{2}{2n+1} & m = n \end{cases}$$

6) Rodriguez's Formula

$$P_n(\mu) = \frac{1}{2^n n!} \frac{d^n}{d\mu^n} (\mu^2 - 1)^n$$

7) Recurrence Formulae

$$(n+1)P_{n+1}(\mu) - (2n+1)\mu P_n(\mu) + nP_{n-1}(\mu) = 0$$

$$P'_{n+1}(\mu) - P'_{n-1}(\mu) = (2n+1)P_n(\mu)$$

$$(\mu^2 - 1)P'_n(\mu) = n[\mu P_n(\mu) - P_{n-1}(\mu)]$$

Proofs

1) Write
$$c_0 = 1$$
, $c_r = \frac{1 \cdot 3 \cdots 2r - 1}{2 \cdot 4 \cdots 2r} = \frac{\Gamma\left(r + \frac{1}{2}\right)}{r!\Gamma\left(\frac{1}{2}\right)}$
Then $(1-z)^{-\frac{1}{2}} = \sum_{0}^{\infty} c_r z^r \quad |z| < 1$

$$\frac{1}{(1+h^2-2\mu h)^{\frac{1}{2}}} = \frac{1}{[(1-he^{i\theta})(1-he^{-i\theta})]^{\frac{1}{2}}}$$

where $\cos \theta = \mu$ (θ real if $-1 \le \mu \le 1$, but we don't assume this).

So
$$\frac{1}{(1+h^2-2\mu h)^{\frac{1}{2}}} = \sum_{0}^{\infty} c_r h^r e^{ir\theta} \sum_{0}^{\infty} c_s h^s e^{is\theta}$$
 $|h| < |\mu \pm (\mu^2 - 1)^{\frac{1}{2}}|$

 $P_n(\mu)$ = coefficient of h^n on RHS

$$= c_n c_0 e^{in\theta} + c_{n-1} c_1 e^{i(n-1)\theta} e^{-i\theta} + c_{n-2} c_2 e^{i(n-2)\theta} e^{-i2\theta} + \dots + c_0 c_n e^{-in\theta}$$

$$= c_0 c_n [e^{in\theta} + e^{-in\theta}] + c_1 c_{n-1} [e^{i(n-2)\theta} + e^{-i(n-2)\theta}] + \cdots$$

$$+ \left\{ \begin{array}{ll} \frac{c_n^2}{2} & n \text{ even} \\ \frac{c_{n-1}}{2} c_{n+1} 2(e^{i\theta} + e^{-i\theta}) & n \text{ odd} \end{array} \right.$$

$$= 2c_0c_n\cos n\theta + 2c_1c_{n-1}\cos(n-2)\theta + \dots + \begin{cases} \frac{c_n^2}{2} \\ \frac{c_{n-1}}{2}c_{n+1}2\cos\theta \end{cases}$$

 $\cos n\theta = \text{polynomial in } \cos \theta \text{ of degree } n, \text{ in alternate powers}$

 $n, n-2, \cdots 0$ or 1 for odd and even.

Therefore $P_n(\mu)$ is a polynomial in μ of degree n, in alternate powers $n, n-2\cdots$

2) Putting $\mu = 1$ we have $\frac{1}{1-h} = \sum_{n=0}^{\infty} h^n P_n(1)$, therefore $P_n(1) = 1$

Since
$$P_n(-\mu) = (-1)^n P_n(\mu)$$
 $P_n(-1) = (-1)^n$

Values of P_0, P_1, P_2, P_3 :

$$\frac{1}{[1+(h^2-2\mu h)]^{\frac{1}{2}}} = \sum_{0}^{\infty} c_r (2\mu h - h^2)^r$$
$$= 1 + hc_1(2\mu - h) + h^2c_2(4\mu^2 - 4\mu h + h^2) + h^3c_3(8\mu^3 + \cdots)$$

Therefore

$$P_0(\mu) = 1$$

$$P_1(\mu) = 2c_1\mu = \mu$$

$$P_2(\mu) = -c_1 + 4c_2\mu^2 = -\frac{1}{2} + \frac{4 \cdot 1 \cdot 3}{2 \cdot 4}\mu^2 = \frac{3\mu^2 - 1}{2}$$

$$P_3(\mu) = \frac{5}{2}\mu^3 - \frac{3}{2}\mu$$

3) From $P_n(\mu) = 2c_0c_n\cos n\theta + \cdots$

$$|P_n(\mu)| \le 2c_0c_n|\cos n\theta| + \cdots$$

As $c_0c_1\cdots$ are all positive. If $-1 \le \mu \le 1$ $\mu\cos\theta$ is real and $|\cos n\theta| \le 1$. Therefore $|P_n(\mu)| \le 2c_0c_n + \cdots = P_n(1) = 1$

4) Legendre's equation

We have the result that $r^n P_n(\cos \theta)$ is a solution of $\nabla^2 V = 0$ in spherical polar co-ordinates.

Therefore
$$\frac{1}{r^2} \frac{\partial}{\partial r} \left\{ r^2 \frac{\partial}{\partial r} r^n P_n(\cos \theta) \right\} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} r^n P_n(\cos \theta) = 0$$

Therefore
$$n(n+1)r^{n-2}P_n(\mu) + r^{n+2}\frac{d}{d\mu}(1-\mu^2)\frac{d}{d\mu}P_n\mu = 0$$

Therefore
$$P_n(\mu)$$
 satisfies $\frac{d}{d\mu}(1-\mu^2)\frac{dw}{d\mu} + n(n+1)w = 0$

[N.B. This equation has solutions linearly independent of $P_n(\mu)$ since it is of the second order. These solutions are unbounded at $\mu \pm 1$ corresponding to $\theta = 0$ or π (i.e. the 2-axis).

5) Orthogonal Property

i)
$$\frac{d}{d\mu}(1-\mu^2)\frac{d}{d\mu}P_n(\mu) + n(n+1)P_n(\mu) = 0$$

ii)
$$\frac{d}{d\mu}(1-\mu^2)\frac{d}{d\mu}P_m(\mu) + m(m+1)P_m(\mu) = 0$$

$$(i)P_m(\mu) - (ii)P_n(\mu)$$
 gives

$$\frac{d}{d\mu}(1-\mu^2)\left\{P_m\frac{d}{d\mu}P_n - P_n\frac{d}{d\mu}P_m\right\} + [n(n+1) - m(m+1)]P_mP_n = 0$$

So
$$(n-m)(n+m+1)\int_{-1}^{1} P_m P_n d\mu + [(1-\mu^2)(P_m P_n' - P_n P_m')]_{-1}^{1} = 0$$

Therefore
$$\int_{-1}^{1} P_m P_n d\mu = 0$$
 $m \neq n$

Value of
$$\int_{-1}^{1} P_n^2(\mu) d\mu$$

$$\frac{1}{(1-2\mu h+h^2)} = \left[\sum_{n=0}^{\infty} h^n P_n(\mu)\right]^2$$

$$\int_{-1}^{1} \frac{d\mu}{1 - 2\mu h + h^2} = \int_{-1}^{1} \left[\sum_{n=0}^{\infty} h^n P_n(\mu) \right]^2 d\mu$$

$$LHS = \left[-\frac{1}{2h} \log(1 - 2\mu h + h^2) \right]_{-1}^{1} = \frac{1}{2h} \log \frac{(1+h)^2}{(1-h)^2}$$

$$= \frac{1}{h} \log \frac{1+h}{1-h} = 2 \sum_{0}^{\infty} \frac{h^{2n}}{2n+1}$$

$$RHS = \int_{-1}^{1} \sum_{n=0}^{\infty} h^n P_n(\mu) \sum_{m=0}^{\infty} h^m P_m(\mu) d\mu$$

$$= \sum_{n=0}^{\infty} h^n \int_{-1}^{1} P_n(\mu) \sum_{m=0}^{\infty} h^m P_m(\mu) d\mu$$

$$= \sum_{n=0}^{\infty} h^n \sum_{m=0}^{\infty} h^m \int_{-1}^{1} P_n(\mu) P_m(\mu) d\mu$$

$$= \sum_{n=0}^{\infty} h^{2n} \int_{-1}^{1} P_n^2(\mu) d\mu \quad \text{therefore } \int_{-1}^{1} P_n^2(\mu) d\mu = \frac{2}{2n+1}$$

6) Rodriguez's Formula

 P_m is perpendicular to P_n , $m \neq n$, $P_n(1) = 1$, $P_n(\mu)$ is of degree n. Define $F(\mu)$ of degree 2n such that $F^{(n)}(\mu) = P_n(\mu)$

$$F(1) = F'(1) = \dots = F'(n-1) = 0.$$

In fact $F(\mu) = \frac{1}{(n-1)!} \int_1^{\mu} (\mu - \lambda)^{n-1} P_n(\lambda) d\lambda$

- i) $F(\mu)$ has a zero of order n at $\mu = +1$
- ii) We show from the orthogonal properties that $F(\mu)$ has a zero of order n at $\mu = -1$.

Assuming this we have

$$F(\mu) = (\mu - 1)^n (\mu + 1)^n * \text{ poly. of degree } 0$$
$$= c(\mu - 1)^n (\mu + 1)^n = c(\mu^2 - 1)^n$$

Therefore
$$P_n(\mu) = c \frac{d^n}{d\mu^n} (\mu^2 - 1)^n$$

To find c let $\mu = 1$

$$1 = c \left[\frac{d^n}{d\mu^n} (\mu - 1)^n (\mu + 1)^n \right]_{\mu = 1} = cn! 2^n$$

Therefore $c = \frac{1}{n!2^n}$ using Leibniz theorem.

Proof of (ii)

Since $P_0, P_1 \cdots$ are linearly independent polynomials, any polynomial $f(\mu)$ of degree r can be expressed uniquely as $c_0P_0 + c_1P_1 + \cdots + c_rP_r$.

 P_n is perpendicular to P_r , r < n, therefore P_n is perpendicular to any polynomial of degree r < n. In particular P_n is perpendicular to $(1 + \mu)^r$, r < n.

i.e.
$$\int_{-1}^{1} P_n(\mu)(1+\mu)^r d\mu = 0, \quad r < n$$

i.e.
$$\int_{-1}^{1} F^{(n)}(\mu)(1+\mu)^r d\mu = 0, \quad r < n$$

Denote this by $I_{n,r}$, where $I_{n,r} = 0$ for 0 < r < n

$$I_{n,r} = -r \int_{-1}^{1} F^{(n-1)}(\mu) (1+\mu)^{r-1} d\mu$$

Therefore $I_{n-1,r-1} = 0$ for 1 < r < n

By r integrations by parts $\int_{-1}^{1} F^{(n-r)}(\mu) d\mu = 0$

$$[F^{(n-r-1)}(\mu)]_{-1}^1 = 0 \quad F^{(n-r-1)}(1) = F^{(n-r-1)}(-1) = 0 \quad r = 0, 1, \dots, n-1$$

Hence (ii) follows.

Suppose $f(\mu)$ has derivatives of all orders in [-1, 1].

$$\int_{-1}^{1} f(\mu) P_n(\mu) d\mu = \frac{1}{2^n n!} \int_{-1}^{1} f(\mu) D^n (\mu - 1)^n d\mu$$

$$= \frac{1}{2^n n!} \int_{-1}^{1} [-f'(\mu)] D^{n-1} (\mu^2 - 1)^n d\mu + 0$$

$$= \frac{(-1)^n}{2^n n!} \int_{-1}^{1} f^{(n)}(\mu) (\mu^2 - 1) d\mu = \frac{1}{2^n n!} \int_{-1}^{1} (1 - \mu^2)^n f^{(n)}(\mu) d\mu$$
e.g.
$$\int_{-1}^{1} P_n^2(\mu) = \frac{1}{2^n n!} \int_{-1}^{1} (1 - \mu^2)^n D^n P_n(\mu) d\mu = \frac{2}{2n + 1}$$

7) Recurrence Formulae

We have
$$G(\mu, h) \equiv (1 - 2\mu h + h^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} h^n P_n(\mu)$$

(a)
$$\frac{\partial G}{\partial h} = \frac{\mu - h}{(1 - 2\mu h + h^2)}G$$

i.e.
$$(1 - 2\mu h + h^2) \sum_{1}^{\infty} n P_n(\mu) h^{n-1} = (\mu - h) \sum_{1}^{\infty} h^n P_n(\mu)$$

Equating coefficients of h^n on each side

$$(n+1)P_{n+1}(\mu) - 2\mu n P_n(\mu) + (n-1)P_{n-1}(\mu) = \mu P_n(\mu) - P_{n-1}(\mu) \quad (i)$$

$$2P_2(\mu) - 2\mu P_1(\mu) = \mu P_1(\mu) - P_0(\mu) \tag{ii}$$

$$P_1(\mu) = \mu P_0(\mu) \tag{iii}$$

(i) gives
$$(m+1)P_{m+1}(\mu) - (2n+1)\mu P_n(\mu) + nP_{n-1}(\mu) = 0$$

(b)
$$\frac{\partial g}{\partial \mu} = \frac{h}{(1 - 2\mu h + h^2)}G$$
 $\frac{\partial G}{\partial h} = \frac{\mu - h}{(1 - 2\mu h + h^2)}G$

$$\left(\frac{1}{h} - h\right)\frac{\partial G}{\partial \mu} - 2h\frac{\partial G}{\partial h} = \frac{1 - h^2 - 2h(\mu - h)}{(1 - 2\mu h + h^2)}G = G$$

Therefore
$$\left(\frac{1}{h} - h\right) \frac{\partial G}{\partial \mu} = \left(2h \frac{\partial}{\partial h} + 1\right) G$$

$$\left(\frac{1}{h} - h\right) \sum_{1}^{\infty} h^n P'_n(\mu) = \sum_{1}^{\infty} (2n+1)h^n P_n(\mu)$$

therefore $P'_{n+1}(\mu) - P'_{n-1}(\mu) = (2n+1)P_n(\mu)$

$$P_2'(\mu) = 3P_1(\mu)$$

This formula gives

$$\int_{1}^{\mu} P_{n}(\lambda) d\lambda = \frac{1}{2n+1} \left\{ P_{n} + 1(\mu) - P_{n-1}(\mu) \right\}$$

(c)
$$\frac{\mu^2 - 1}{h} \frac{\partial G}{\partial \mu} - (\mu - h) \frac{\partial G}{\partial h} = -G$$

Therefore
$$(\mu^2 - 1)P'_n(\mu) = n(\mu P_n(\mu) - P_{n-1}(\mu))$$

$$= n \left\{ \frac{(n+1)P_{n+1}(\mu) + nP_{n-1}(\mu)}{2n+1} - P_{n-1}(\mu) \right\}$$

$$= \frac{n(n+1)}{2n+1} \{ P_{n+1}(\mu) - P_{n-1}(\mu) \}$$

Differentiating the above gives

$$\frac{d}{d\mu}(\mu^2 - 1)\frac{dP_n(\mu)}{d\mu} = \frac{n(n+1)}{2n+1} \{P'_{n+1}(\mu) - P'_{n-1}(\mu)\} = n(n+1)P_n(\mu)$$

which is Legendre's equation.

[Note that $\frac{\partial}{\partial \mu}(\mu^2 - 1)\frac{\partial G}{\partial \mu} = h\frac{\partial}{\partial h}\left(h\frac{\partial}{\partial h} + 1\right)G$ and this leads to the differential equation.]

Zeros of $P_n(\mu)$

$$P_n(\mu) = \frac{1}{2^n n!} \frac{d^n}{d\mu^n} (\mu^2 - 1)^n$$

 $(\mu^2 - 1)^n$ has n zeros at -1 and n zeros at +1.

therfore $\frac{d}{d\mu}(\mu^2 - 1)^n$ has n - 1 zeros at -1, n - 1 zeros at +1 and therefore one (say μ) in (-1, 1), as it has 2n - 1 altogether.

Continuing this process $\frac{d^n}{d\mu^n}(\mu^2-1)^n$ has n zeros in $-1<\mu<1$, all simple.

Axially Symmetric Potentials (in spherical co-ordinates) DIAGRAM

Let U be a solution of $\nabla^2 U = 0$, existing in $a \leq r \leq b$ and axially symmetric about Oz.

If (r, θ, ϕ) are spherical polar co-ordinates, where $\theta = 0$ and $\theta = \pi$ is the same z-axis, then U has the form $\sum_{n=0}^{\infty} \left(A_n r^n + \frac{B_n}{r^{n+1}}\right) P_n(\cos \theta)$

on
$$\theta = 0$$
 this becomes $U(r, 0) = \sum_{n=0}^{\infty} \left(A_n r^n + \frac{B_n}{r^{n+1}} \right)$.

Conversely if U(r,0) has this form and exists in $a \le r \le b$ then

$$U(r,\theta) = \sum_{n=0}^{\infty} \left(A_n r^n + \frac{B_n}{r^{n+1}} \right) P_n(\cos \theta)$$

Example

DIAGRAM

$$U = \int \frac{dS}{|\vec{r} - \vec{r_0}|}$$

where \vec{r} is the position vector of the field point, and where $\vec{r_0}$ is the position vector of a point on the disc, and the integral is taken over the disc with boundary r = C, $\theta = \alpha$, referred to Oz.

$$U(r,0) = 2\pi \int_0^a \frac{pdp}{(p^2 + h^2)^{\frac{1}{2}}} = 2\pi \left[\sqrt{a^2 + h^2} - |h|\right] = 2\pi (R - h)$$

 $h = c\cos\alpha - r$

Therefore
$$U(r,0) = 2\pi[(r^2 + c^2 - 2rc\cos\alpha)^{\frac{1}{2}} - (c\cos\alpha - r)]$$

 $(r^2 + c^2 - 2rc\cos\alpha)^{\frac{1}{2}} = (r^2 + c^2 - 2rc\cos\alpha)(r^2 + c^2 - 2rc\cos\alpha)^{\frac{1}{2}}$

$$= (r^{2} + c^{2} - 2rc\cos\alpha) \begin{cases} \sum_{n=0}^{\infty} \frac{c^{n}}{r^{n+1}} P_{n}(\cos\alpha) & r < c \\ \sum_{n=0}^{\infty} \frac{r^{n}}{c^{n+1}} P_{n}(\cos\alpha) & r > c \end{cases}$$

For r > c, putting $\lambda = \cos \alpha$,

$$\frac{(r^2 + c^2 - 2rc\cos\alpha)^{\frac{1}{2}}}{r} = \left(1 + \frac{c^2}{r^2} - 2\lambda \frac{e}{r}\right) \sum_{0}^{\infty} \left(\frac{c}{r}\right)^n P_n(\lambda)$$
$$= P_0(\lambda) + \frac{c}{r} \{P_1(\lambda) - 2\lambda P_0(\lambda)\} + \sum_{r=2}^{\infty} \left(\frac{c}{r}\right)^n \{P_n(\lambda) - 2\lambda P_{n-1}(\lambda) + P_{n-2}(\lambda)\}$$

Therefore
$$(r^2 + c^2 - 2rc\cos\alpha)^{\frac{1}{2}} - (r - c\lambda)$$

$$= r \left(1 + \frac{c}{R} (-\lambda) + \sum_{n=2}^{\infty} \{ P_n(\lambda) - 2\lambda P_{n-1}(\lambda) + P_{n-2}(\lambda) \} \right) - (r - c\lambda)$$

$$(r > c \Rightarrow r > c\lambda)$$

$$= r \sum_{n=2}^{\infty} \frac{c^n}{r^n} F_n(\lambda), \qquad F_n(\lambda) = P_n(\lambda) - 2\lambda P_{n-1}(\lambda) + P_{n-2}(\lambda)$$

Therefore
$$\frac{U(r,0)}{2\pi} = \sum_{n=2}^{\infty} \frac{c^n}{r^{n-1}} F_n(\lambda) = \sum_{n=0}^{\infty} \frac{c^{n+2}}{r^{n+1}} F_{n+2}(\lambda)$$
 $r > c$

Therefore
$$\frac{U(r,0)}{2\pi} = \sum_{n=0}^{\infty} \frac{c^{n+2}}{r^{n+1}} P_n(\cos\theta) F_{n+2}(\cos\alpha)$$

[For large r, RHS $\approx \frac{c^2}{r} F_2(\cos \alpha)$

$$F_2(\cos \alpha) = P_2(\cos \alpha) - 2\cos \alpha P_1(\cos \alpha) + P_0(\cos \alpha)$$

$$= \frac{3\cos^2 \alpha - 1}{2} - 2\cos^2 \alpha + 1 = \frac{1}{2} - \frac{1}{2}\cos^2 \alpha = \frac{1}{2}\sin^2 \alpha$$

Therefore
$$U(r,\theta) \sim \frac{\pi c^2 \sin^2 \alpha}{r} = \frac{\pi a^2}{r}$$
 as $r \to \infty$]

$$F_{n+2}(\lambda) = P_{n+2} - 2\lambda P_{n+1} + P_n$$

$$= P_{n+2} + P_n - 2\left\{\frac{(n+2)P_{n+2} + (n+1)P_n}{2n+3}\right\}$$

$$= \frac{-P_{n+2} + P_n}{2n+3} = \frac{(1-\lambda^2)P'_{n+1}(\lambda)}{(n+1)(n+2)}$$

Example of Boundary Problem

To find a potential V existing in $0 \le r \le a$ such that V + U = 0 on r = awhere $U(r,\theta)$ is the potential considered above.

$$V(r,\theta)$$
 must be of the form $\sum_{n=0}^{\infty} \frac{r^n}{a^n} A_n P_n(\cos \theta)$

Hence we require
$$\sum_{n=0}^{\infty} A_n P_n(\cos \theta) + U(a, \theta) = 0$$
$$\frac{U(a, \theta)}{2\pi} = \sum_{n=0}^{\infty} \frac{c^{n+2}}{a^{n+1}} P_n(\cos \theta) F_{n+2}(\lambda)$$

$$\frac{U(a,\theta)}{2\pi} = \sum_{n=0}^{\infty} \frac{c^{n+2}}{a^{n+1}} P_n(\cos\theta) F_{n+2}(\lambda)$$

Therefore
$$\frac{V}{2\pi} = -\sum_{n=0}^{\infty} r^n \frac{c^{n+2}}{a^{2n+1}} P_n(\cos\theta) F_{n+2}(\lambda).$$

Definition - Solid Harmonic of degree n

If f(x, y, z) is a polynomial in x, y, z homogeneous and of degree n, and if $\nabla^2 f = 0$, then f is said to be a solid harmonic of degree n.

Example: 1;
$$x, y, z$$
; $yz, zx, xy, z^2 - x^2, z^2 - y^2$, etc.

Definition - Surface Harmonic of degree n

If $f(x,y,z) = r^n S_n(\mathbf{u})$ or $r^n S_n(\theta,\phi)$ where S_n depends only on the unit vector **u** along the position vector, or on the spherical polar angles θ , ϕ , S_n is called a surface harmonic of degree n.

Differential Equation satisfied by S_n

Substitute
$$f = r^n S_n$$
 in $\nabla^2 f = 0$.
$$\left\{ \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{d}{d\theta} + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right\} f = 0$$
Therefore $\left\{ \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{d}{d\theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} + n(n+1) \right\} S_n = 0$ (1)

This equation admits solutions of the form $s(\theta)e^{\pm im\phi}$, m constant, where

$$\frac{1}{\sin \theta} \frac{d}{d\theta} \sin \theta \frac{ds}{d\theta} + \left(n(n+1) - \frac{m^2}{\sin^2 \theta} \right) s = 0$$

Putting $\cos \theta = \mu$, so $\frac{1}{\sin \theta} \frac{d}{d\theta} = -\frac{a}{d\mu}$ this becomes

$$\frac{d}{d\mu}(1-\mu^2)\frac{ds}{d\mu} + \left(n(n-1) - \frac{m^2}{1-\mu^2}\right)s = 0$$
(2)

Equation (2) is called Legendre's associated equation. For m=0 it reduces to Legendre's equation. In this case S_n is independent of ϕ , i.e. is axially

symmetric. One solution is $P_n(\mu)$.

The number of linearly independent Surface Harmonics of degree n is 2n+1

f can always be written

$$f = \phi_n(x,y) + \frac{z}{1!}\phi_{n-1}(x,y) + \frac{z^2}{2!}\phi_{n-2}(x,y) + \cdots$$

where ϕ_r is a homogeneous polynomial in x,y of degree r .

$$\nabla^2 f = \nabla_1^2 + \frac{\partial^2}{\partial z^2} = (\nabla_1^2 \phi_n + \phi_{n-2}) + \frac{z}{1!} (\nabla_1^2 \phi_{n-1} + \phi_{n-3}) + \dots + \frac{z^{n-3}}{(n-3)!} (\nabla_1^2 \phi_3 + \phi_1) + \frac{z^{n-2}}{(n-2)!} (\nabla_1^2 \phi_2 + \phi_0)$$

Since this must vanish identically

$$\nabla_1^2 \phi_n + \phi_{n-2} = 0 \qquad \qquad \nabla_1^2 \phi_{n-1} + \phi_{n-3} = 0$$

$$\nabla_1^2 \phi_{n-2} + \phi_{n-4} = 0 \cdots \qquad \qquad \nabla_1^2 \phi_{n-3} + \phi_{n-5} = 0 \cdots$$

Therefore ϕ_n , ϕ_{n-1} are arbitrary polynomials in x, y of degrees n and n-1, and for the others we have

$$\phi_{n-2r} = (-1)^r (\nabla_1^2)^r \phi_n$$

$$\phi_{n-2r-1} = (-1)^r (\nabla_1^2)^r \phi_{n-1}$$

Therefore
$$f = \phi_n - \frac{z^2}{2!} \nabla_1^2 \phi_n + \frac{z^4}{4!} (\nabla_1^2)^2 \phi_n - \dots + \frac{z}{1!} \phi_{n-1} - \frac{z^3}{3!} (\nabla_1^2) \phi_{n-1} + \frac{z^5}{5!} (\nabla_1^2)^2 \phi_{n-1} - \dots$$
 where both series must terminate.

 ϕ_n can have any one of the forms $x^n, x^{n-1}y, \cdots y^n$. There are n+1 of these, and they are linearly independent.

 ϕ_{n-1} can have any one of the forms $x^{n-1}, x^{n-2}y, \cdots y^{n-1}$. There are n of these, and they are linearly independent.

Therefore the total number of forms is 2n+1 and the corresponding f's are linearly independent.

Associated Legendre Functions [Ferrer's definition]

$$P_n^m(\mu) = (1 - \mu^2)^{\frac{m}{2}} \frac{d^m}{d\mu^m} P_n(\mu) = (1 - \mu^2)^{\frac{m}{2}} \frac{1}{2^n n!} \frac{d^{m+n}}{d\mu^{m+n}} (\mu^2 - 1)^n$$

is the associated Legendre function of the first kind of degree n, order m. There are n+1 such functions for $m=0,1,2\cdots n$. We show

i) $r^n e^{\pm mi\phi} P_n^m(\cos \theta) = \text{polynomial in } x, y, z \text{ of degree } n.$

ii)
$$\nabla^2 r^n e^{\pm mi\phi} P_n^m(\cos\theta) = 0$$

i)
$$P_n^m(\cos\theta) = \sin^m\theta$$
 [Poly. in $\cos\theta$; $\cos^{n-m}\theta \cdots \begin{cases} \cos\theta & n-m \text{ odd} \\ 1 & n-m \text{ even} \end{cases}$ $r^ne^{im\phi}P_n^m\cos\theta = (r\sin\theta)^me^{im\phi}r^{n-m}[\cdots]$
$$= (x+iy)^m \text{ [Poly in } z, r^2; z^{n-m}, z^{n-m-2}r^2 \cdots \begin{cases} zr^{n-m-1} & n-m \text{ odd} \\ r^{n-m} & n-m \text{ even} \end{cases}$$
 $= \text{poly in } x, y, z, \sin\theta, \quad r^2 = x^2 + y^2 + z^2$

ii) To show
$$\nabla^2 r^n e^{\pm im\phi} (1 - \mu^2)^{\frac{m}{2}} \frac{d^m}{d\mu^m} P_n(\mu) = 0$$

This is so if $e^{\pm im\phi} (1 - \mu^2)^{\frac{m}{2}} \frac{d^m}{d\mu^m} P_n(\mu)$
satisfies $\left[\frac{\partial}{\partial \mu} (1 - \mu^2) \frac{\partial}{\partial \mu} + \left(n(n+1) + \frac{1}{1 - \mu^2} \right) \frac{ap^2}{\partial \phi^2} \right] (\) = 0$
i.e. if $(1 - \mu^2)^{\frac{m}{2}} D^m P_n(\mu)$ satisfies
$$L(m; w) = \left[\frac{d}{d\mu} (1 - \mu^2) \frac{d}{d\mu} + n(n+1) - \frac{m^2}{1 - \mu^2} \right] w = 0$$

This is know as Legendre's Associated equation.

Now

$$L(m: (1-\mu^2)^{\frac{m}{2}}W) = \frac{d}{d\mu} \left\{ (1-\mu^2)^{\frac{m}{2}+1} \frac{dW}{d\mu} - m\mu(1-\mu^2)^{\frac{m}{2}}W \right\}$$

$$+ \left\{ n(n+1) - \frac{m^2}{1-\mu^2} \right\} (1-\mu^2)^{\frac{m}{2}}W$$

$$= (1-\mu^2)^{\frac{m}{2}+1} \frac{d^2W}{d\mu^2} + (-\mu(m+2) - m\mu)(1-\mu^2)^{\frac{m}{2}} \frac{dW}{d\mu}$$

$$-mW((1-\mu^2)^{\frac{m}{2}} - m\mu^2(1-\mu^2)^{\frac{m}{2}-1})$$

$$+ \left\{ n(n+1) - \frac{m^2}{1-\mu^2} \right\} (1-\mu^2)^{\frac{m}{2}}W$$

$$= (1-\mu^2)^{\frac{m}{2}} L_1(m:W)$$

where
$$L_1(m:W)$$

= $\left\{ (1-\mu^2) \frac{d^2}{d\mu^2} - 2(m+1) | mu \frac{d}{d\mu} + n(n+1) - m(m+1) \right\} W$

We must now show that

We finds frow show that
$$L_1(m:D^mP_n(\mu)) = 0$$
Since $L_1(m;W) = 0 \Rightarrow DL_1(m:W) = 0$ we get
$$[(1-\mu^2)D^3 + (-2\mu D^2 - 2(m+1)\mu D^2) + n(n+1) - m(m+1) - 2(m+1)D]W = 0$$
i.e. $[(1-\mu^2)D^2 - 2\mu(m+2)D + n(n+1) - (m+1)(m+2)]DW = 0$
i.e. $L_1(m+1;DW) = 0$
i.e. $L_1(m;W) = 0 \Rightarrow L_1(m+1;DW) = 0$
i.e. $L_1(0;W) = 0 \Rightarrow L_1(m;D^mW) = 0$
i.e. $L_1(0;P_n(\mu)) = [(1-\mu^2)D^2 - 2\mu D + n(n+1)]P_n(\mu) = 0$

Therefore $L_1(m; D^m P_n(\mu)) = 0$ as required.

General Surface Harmonic of degree n

Giving m the values $0, 1, \dots, n$ in $r^n e^{\pm mi\phi} P_n^m(\cos \theta)$ we have $r^n P_n(\cos \theta), \quad r^n e^{\pm i\phi} P_n'(\cos \theta), \dots r^n e^{\pm ni\phi} P_n^n(\cos \theta).$

These are 2n+1 in number and are linearly independent (from the orthogonality of 1, $e^{\pm i\phi}\cdots$ over $0 \le \phi \le 2\pi$).

Therefore

$$S_n = A_0 P_n(\mu) + \sum_{m=1}^n (C_m e^{mi\phi} + C'_m e^{-mi\phi}) P_n^m(\mu)$$

= $A_0 P_n(\mu) + \sum_{m=1}^n (A_m \cos m\phi + B_m \sin m\phi) P_n^m(\mu)$

Solutions of Legendre's equation when $n \neq integer$