Solutions of Laplace’s Equation and others in Spherical
Co-ordinates

V2V =0 Laplace’s Equation
1 0*V
2 .
V= 012 g ‘t/2 Wave Equation

ViV = o Diffusion Equation

V2 +{l —v(x,y,2)}¢» =0 Wave Mechanics Equation

, 10 5,0 1 0 0 1 0?
V' = 551" 5+ 5 ——75;sinl— +

r29r  Or  r2sinf oo 90 ' 1r2sin20 9?2
Ax1ally Symmetric Solutions of /?V = 0
1

— = ——— is a solution of Laplaces equation in the coordinates x, vy, z.
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a" 1 , 0" 1
Wehlav;nvgl( )—Oandsoacv ~=0or y* e R:O
ie. —— (—) is a solution of Laplaces equation and in particular
n! 00" R
[ 5o >] is a solution.
NB. 2(%) = 862< ) and so [2-(1)].—o = (—1)" 21 i.e. the above solution
can be written n!) 21



1 1 oy 1
— = - and (r — ce®®)"2 has a power series expansion

R [(r— ce®)(r — ce=#)]z
i0
c
in powers of ¢, which is absolutely convergent for < 1li.e. for U <1
r r
when @ is real.
.. ; 1
Similarly for (r — ce=%)"2.
1
Therefore — = — —— has a power series expansion in ¢
R (r — ce?®)z(r — ce¥?)z

]

which is also convergent for — < 1 (€ real) and the coefficient of ¢" is
r

ot
n! |0c" R, _,

Therefore the coefficient of ¢" in the above expansion of % in powers of ¢ is
a solution of Laplace’s equation

1 1 1 1 & "

i + and so = > (E) P, (cos @) for I < 1 and
7’[1—%0089—%?—2}2 Tn=0 M r

0 real.P 0

Thus M is a solution of Laplace’s equation and is axially symmetric.

TnJrl
Similarly, by considering the expansion of % for positive powers of % with
lc| > r, 0 real, we find that r"P,(cos ) is also an axially symmetric solution.

Alternative Argument

v
If V is a solution of 572V = 0, homogeneous and of degree n, then ——— is

T2n+1
also a solution of 72V = 0 of degree —(n + 1).
Proof o
AVt =2V + Vgt e 4 2 Vyr” =" 2V 4+ Vim(m 4 1)rm 2% +
2mrm*1%—v

and since V' is homogeneous of degree n, i nV. So if 72V = 0, then
r

VAVrm = rm 2 m(m+ 1) + 2mn]V =0 if m =0, —2n — 1.
1 1 & n
From F=-> (E> P,(cos0) (|e] < r, 6 real)
(r24c¢*—2rccosf)z T H\T
Putting r =1, ¢ = h, cosf = pu, we have the definition of the P,’s.

1 SN
TP S (In] < 1, veal =1 < p < 1)

This expansion is valid for all h and g, where |h| < |p =4 (42 — 1)2], since




=

(p+ (* = )5 = h)(p— (W = 1)2 —h) =1 = 2uh + I?

Properties of P, (u)

1) P,(u) is a polynomial in p of degree n, in alternate powers n,n—2,--- 1
or 0. i.e.Py, (1) contains even powers and is an even function. Py, 1(p)
contains odd powers and is an odd function.

2) (1) =1 PFu(-1)=(-1)"
3 Pl <1 —1<p<1
4) Legendre’s Equation

P,(p) is a solution of %(1 - /f)%w +nn+1w=0

5) Orthogonal Properties
1 0 m#n
/ P (p) P (p)dp = { > i "

-1 2n+1

6) Rodriguez’s Formula

1 §
Po(p) = 2"n!d—u"<uz —1)

7) Recurrence Formulae
(n+1)Poa(p) = (2n + DpP(p) + nb, () =0
Brp(p) = Py (p) = (20 + 1) P(p)
(1* = )Py () = nlply(p) = Pooa(p)]

Proofs

_ I 1
D) Wite ¢ =1, e = 1.32.4- -z-rzr "= rgli 5)

Then (1 — z)_% =Y ¢z |zl <1
0

1 1

(1+h%—2uh)z  [(1— he®)(1 — he=)]z
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where cosf = (0 real if —1 < ,u < 1, but we don’t assume this).
1 1
0 = crh“ ird cshS it hl < |u+(p*—1)2
Pn(u): coefﬁment of h™ on RHS
n— 1)9

= cpcoe™ + ¢p_icre —ind

f— cocn[eine _I_ 67m0] + Clcn—l[ei(n72) + 672(n72)0] + .

c2
TL
+{ 2 n even

n— 2)9 120_|__.

—0 4 ¢ _gceelt -+ coene

le,12(e? + e nodd
<
= 2¢0C,, cos N + 2¢1¢,, —2)0+--- 2
CoCp cosnb + 2¢1¢,—1 cos(n — 2)0 + —1—{ St 120080
cosnf = polynomial in cos # of degree n, in alternate powers
n,n—2,---0 or 1 for odd and even.

Therefore P,(u) is a polynomial in p of degree n, in alternate powers
nmn—22---

Putting p = 1 we have . =Y h"P,(1), therefore P, (1) =1

Since Py (—p) = (—=1)"Py(y)  Pu(—1) = (—1)
Values of Py, Py, Ps, Ps:
1 oo

1+ (02 —2uh))F XO: & (2uh = W)’
— 14 her (2 — h) + h2ea(4p® — Aph + %) + h3es(SpP + - - )
Therefore
Po(y) =

Pi(p) =21p=pn
Py(p) = —c1 + degp® = _% + %MQ _ 5/%
Py(p) = 2/L - §M

From P,(u) = 2coc, cosnf + - - -
|Po(p)] < 2cocp,| cosn| + - - -

As coeq -+ are all positive. If —1 < pu < 1 pcosf is real and
| cosnd| < 1. Therefore |P, ()| < 2¢oc,, + -+ = Py(1) =1
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Legendre’s equation

We have the result that " P, (cos 6) is a solution of 572V = 0 in spherical
polar co-ordinates.

r2 Or or + 2 sin 6 06 00

d d
Therefore n(n + 1)r">P,(u) + 7""”@(1 — ,uz)@Pn,u =0

Therefore ig {7’227""]3”(008 0)} L 0 sin Qgr”Pn(cos 0) =0

d d
Therefore P, () satisfies @(1 — /Lz)ﬁ +nn+1)w=0

[N.B. This equation has solutions linearly independent of P,(u) since
it is of the second order. These solutions are unbounded at p 4+ 1
corresponding to 8 = 0 or 7 (i.e. the 2-axis).

Orthogonal Property

) (=) 2 Pa) + nln+ DP(0) =0

) 21— 1) 2 Poli) + mlm + )P () =0
(3) Pon(pt) — (i) Pa(t) gives
da—Q%P‘“D—Pdp}+mm+n—mm+mppzw
du a mdu " nd,u " men

1
So (n—m)(n-+m+1) [ PuPadpi+ (1= p2)(PuPs = PuPy)ILy =0

1
Therefore / P, P,du=0 m#n
-1

1
Value of/ P2(u)du
-1

(1- 2u1h +h?) @ th”W)] |

1 du 1 [oo 2
o WP ()| d
[41—mm+h2 [4[0 (M] s




1 ! 1 (14 h)?
LHS=|— — log(1 — 2uh hQ] —
[ op, 108l = 2uh + 1)) = oploe 3o

I R N
R8Ty T2 5,1

RHS= /_ 11 i R P, (1) ij B By (1) dps
—Zh”/ Pa(u ihmp (1)dps
= Z " Z W [ P P

2
2n+1

1
= Z h2"/ P2(u)du therefore/ P?(u)dp =
-1

6) Rodriguez’s Formula

P,, is perpendicular to P,, m #n, P,(1) =1, P,(u) is of degree n.
Define F'(11) of degree 2n such that F™ (u) = P,(u)

F()=F(1)=-=F(n—1)=0.
In fact F(u) = JE( = NP, (N)dA

1
(n—1)!

i) F(u) has a zero of order n at p = +1

ii) We show from the orthogonal properties that F'(u) has a zero of
order n at u = —1.

Assuming this we have
F(p) = (p—1)™(u+ 1)"x poly. of degree 0
=c(p—1)"(p+1)" =c(p? - 1)"

mn

d
Therefore P,(u) = c—(u* — 1)"

d n

To find clet =1

dTL
l=c|—(p—1)"(p+1)" = cnl2"

dum™ .

“_
1 . o

Therefore ¢ = —— using Leibniz theorem.

nl2



Proof of (ii)

Since Fy, P - - - are linearly independent polynomials, any polynomial
f(p) of degree r can be expressed uniquely as coPy +c1 Py + - - - + ¢, P,

P, is perpendicular to P., r < n, therefore P, is perpendicular to
any polynomial of degree r < m. In particular P, is perpendicular to
(1+p)r, r<n.

1
ie. / P, () (1+p)dp=0, r<n

1e/F Y1+ p)du=0, r<mn

Denote this by 1, ,, where [, , =0 for 0 <r <n
L == [ FOD (14 )

Therefore 1,,_1,-1 =0for1 <r <n

By r integrations by parts /11 FO) ()dp =0

[Fr=r=D())t, =0 FOr=Y(1) = F=D(-1) =0 r=0,1,---n—1

Hence (ii) follows.

Suppose f(u) has derivatives of all orders in [—1,1].

/f d’u_Qny/f )D"(n— 1)"dp
= onpl /_11[ () D" N (p? = 1)"dp +0
= CO [ 0002 = D= i [ 0= 2

Recurrence Formulae

We have G(u, h) = (1 — 2uh + h*) "2 =S B"P, ()
0



()8G w—nh
oh (1 —2uh+ h?)

(1—2uh+h2ZnP VR = (- hZh"

Equating coefﬁments of h™ on each side
(n+ 1) Poyr(p) = 2unBp(p) + (n = 1) Poa () = pPu(p) — Paoa(p) (4)

2Py (p) — 2pPr(p) = pPi(p) — Po(p) (47)
Py(p) = pPo(p) (222)
(i) gives (m + 1) Prs1(p) — (2n + 1)puPu(p) + nbyoq(p) =0

dg h oG w—nh
(b>@:(1—2uh+h2) %:(1—2Mh+h2)G

=G

(l_h)ﬁ_G_Qha_G 1—h?—=2h(n—h)
h o oh (1 —2uh+ h?)

1 oG 0
Therefore (ﬁ — h) on <2h% + 1) G

o0

= ﬁj;mp;@) = > (@n+ DA P (p)

0
therefore )., (1) — P_, (1) = (2n + 1) P, (p)

Py(p) = 3P (p)
This formula gives

J PN = S (P 100 = Paca ()
p?—10G oG
© B G~ =15 = =G

Therefore (1 — 1) Py (1) = n(uPu(pt) — Po-i1(p))

(n+ 1) Poyr(p) + nbp1(p)
= —P,_
" { 2n + 1 n-1(4)
~n(n+1)
Differentiating the above gives
d 2 dPn(,LL) n(n + 1) ! /
— (" =1 = P — P = 1)P,
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which is Legendre’s equation.
0 oG 0 0
[Note that 8—M(,u2 — 1)a = h% (hah + 1) G and this leads to the

differential equation.]

Zeros of P, (1)
1 da
Po(p) (u* = 1)"

- Z"n!d—,u”
(u? — 1)™ has n zeros at —1 and n zeros at +1.

2

d
therfore d—(,u — 1)" has n — 1 zeros at —1, n — 1 zeros at +1 and
1

therefore one (say u) in (—1,1), as it has 2n — 1 altogether.
Continuing this process d—(/ub2 — 1)" has n zeros in —1 < p < 1, all
Nn

simple.

Axially Symmetric Potentials (in spherical co-ordinates)
DIAGRAM

Let U be a solution of y72U = 0, existing in a < r < b and axially symmetric
about Oz.

If (r,0,¢) are spherical polar co-ordinates, where § = 0 and § = 7 is the

0o Bn
same z-axis, then U has the form (Anr” + > P,(cos0)
0

,,anJrl

> B
on # = 0 this becomes U(r,0) = > (Anr" + — )

n+1
5 r
Conversely if U(r,0) has this form and exists in a < r < b then

(%) . Bn
U(r,0) = ZO: (Anr + rn+1> P,(cos )
Example
DIAGRA%/[S
U= / ==

|77 — 79|

where 7 is the position vector of the field point, and where 7 is the position
vector of a point on the disc, and the integral is taken over the disc with
boundary r = C, 0 = «, referred to Oz.
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DIAGRAM J

U(r,0) = 27r/ LW or[\aT+ 12— |h]] = 27(R — h)
) (PP £ h2)2

h=ccosa—r

Therefore U(r,0) = 2r[(r2 + ¢ — 2rccos )z — (ccosa — )]

(r24 ¢ — 2rccosa)? = (r2 4 ¢ — 2rccos a)(r2 + ¢ — 2recos o)z
oo T

¢
> mPn(cos a) r<c
= (r*+c® —2rccosa){ "0,

> :HPn(cosoz) r>c
¢

n=0

For r > ¢, putting A = cosa,
(r2+ ¢ — 2rccos a)z <1+__2/\e> ( )”Pn
r r

r

= Py(\) + ;{Pl()\) —2APy(\)} + Z (;) {P,(A) =2AP,_1(\) + P,_s(\)}
Therefore (72 + c? 27"0 cos oz)% - (r —c))

(1 + = (=N + Z{P —2\P,_1(\) + Png()\)}> —(r—ecl)
(r>c=r1r>c\)
=1 SFR), Fa) = Pa) = 20Pas (V) + Paca(V)

U(r,0 S 2
Therefore (27r ) = nZ::z an()\) = nz::O msz(A) r>c

U(r,0) & 2
Therefore o = > Tn+1P . (cos 0) Fy i o(cos ar)

n=0
[For large 7, RHS~ %Fg(cos @)
Fy(cos ) = Py(cos ) — 2 cos aePy(cos ) + Py(cos a)
_ 3cos’a—1 11, 1

—2cos’a+1=—-—-—cosa=—sin’a
2 o L2 2 2
Therefore U(r,0) ~ IO @ _ T s o0
r r

Foto(N) = Poyo = 2APp + P,

(n+2)Pya+ (n+1)P,
= Poio+ Py —2
2t on + 3
_ _ n+2+Pn o (1 _)‘Q)P;Hrl()‘)

2n+3  (n+1)(n+2)
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Example of Boundary Problem
To find a potential V existing in 0 < r < a such that V+U =0onr =a

where U(r, 6) is the potential considered above.

V(r,6) must be of the form > T—nAnPn(cos 0)
n=0 @

Hence we require » | A, P,(cos6) + U(a,8) =0
0

U a,9 00 o2
(27T ) -y FPn(cos 0) Fry2(N)

n=0

n+2

Therefore — =" (cos0)Fia(N).
0

a2ntt b
Definition - Solid Harmonic of degree n

If f(x,y,z) is a polynomial in z,y, z homogeneous and of degree n, and if
v2f =0, then f is said to be a solid harmonic of degree n.

Example: 1; z,v, 2; yz, 2z, 2y, 22 — 22,22 — 9%, etc

Definition - Surface Harmonic of degree n

If f(z,y,2) =r"Sp(u) or r"S, (0, ¢) where S,, depends only on the unit vector
u along the position vector, or on the spherical polar angles @, ¢, 5, is called
a surface harmonic of degree n.

Differential Equation satisfied by S,,
Substitute f =r"S,, in V2f =0.

r20r Or  r2sinf 06 do 7’2 r2sin?00¢2 [T
.od 1 0?
Therefore {sin@@ SIHQE + 0?0 95° +n(n+ )} Sp,=0 (1)

This equation admits solutions of the form s(0)e*™?  m constant, where
1 d

ds m?
s1n0@sm9@ (n(n+ 1) — sin29> s=0

. 1 d d
Putting cos# = u, so el —@ this becomes
d ds m?
=i (w1 - )50 )

Equation (2) is called Legendre’s associated equation. For m = 0 it reduces
to Legendre’s equation. In this case S, is independent of ¢, i.e. is axially

11



symmetric. One solution is P, (u).

The number of linearly independent Surface Harmonics of degree
nis2n+1

f can always be written
2

f = gbn(m?y) + %an—l(xvy) + %¢n—2(xay> +

where ¢, is a homogeneous polynomial in z,y of degree 7.
2

0 z
Vif=vi+ 92 (Vion + dns) + F(Vfcﬁn—l + ¢n—3)

n—3 ) n—2

2 2
oot m(VW% +¢1) + (n— 2)!(V1¢2 + ¢o)

Since this must vanish identically

Vifn + ¢n2 =0 Vi On-1+ Gn-g =0

Vitn-2+¢na=0-- Vi bn3+dns5=0--

Therefore ¢,,, ¢,_1 are arbitrary polynomials in x,y of degrees n and n — 1,
and for the others we have
¢n—2r = (_1)T(v%>r¢n
Gn2r—1 = (—1)"(V3) Pns
Therefore )

z 2* z
f = ¢n—§V%¢n+E(V%)2¢n— : '+F¢n71_
where both series must terminate.
¢, can have any one of the forms 2", x
and they are linearly independent.
¢n_1 can have any one of the forms z" 1 2" 2y,---y"~!. There are n of
these, and they are linearly independent.
Therefore the total number of forms is 2n 4+ 1 and the corresponding f’s are
linearly independent.

3 5

VA VA
g(V%)%—lJrg(V%)Q%fl—- >

n—1

y,--+y". There are n + 1 of these,

Associated Legendre Functions [Ferrer’s definition]

m d™ m 1 dmt
P ) = (1—p)? —Pu(p) = (1 — p?)> 2—1)"
(1) = (1 —p) T (1) = (1 —p%) 2nn!dum+n(u )
is the associated Legendre function of the first kind of degree n, order m.
There are n + 1 such functions for m =0,1,2---n.

We show

i) r"et™i® Pm(cos f) = polynomial in z,y, 2 of degree n.
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i) 72rmer™i® Pm(cos ) = 0

cos n —m odd

i) P (cosf) = sin™ @ [Poly. in cosf;cos™ ™0 - - - { 1 m—m even

re™m P cos § = (rsin §)memornTm. . ]
2rm ™=l —m odd

_ L\ : 2. .n—m n—m—2,.2
= (x+iy)™ [Poly in z, r*; 2"~ 2 ree.. { snem e even

= poly in z,y, z,sin 0, r? =22+ y? + 2>

ii) To show /2r"e™™?(1 — uz)%d—mpn(,u) =0
u
, m d"”
This is so if e*™?(1 — p?)2 g P,(u)
,um

. B ) 0 L Nap’| |
satisfies [a'u(l s >6M + (”(”"’1) + 1 —M2> a¢21 ()=0

ie. if (1 — pu?)2 D™P, () satisfies

d d m?
L(m;w) = [@(1 — /f)@ +nn+1)— : —M2] w =

This is know as Legendre’s Associated equation.

Now
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where Li(m : W)
= {(1 — ,uz)d— —2(m + 1)]mu% +n(n+1) —m(m + 1)} W

dp?
We must now show that
Liy(m:D™P,(n)) =0
Since Li(m; W) =0= DLy(m : W) =0 we get
(1= p?)D° + (—2pD? = 2(m + )puD?)
+n(n+1)—m(m+1)—2(m+ 1)D]W =0
ie. [(1—p*)D*—2u(m+2)D+n(n+1)— (m+1)(m+2)]DW =0
ie. Li(m+1;DW) =0
ie. Li(m;W)=0= Li(m+1,DW)=0
ie. Li(0,W)=0= Ly(m;D"W) =0
Li(0; P(p)) = [(1 = p?)D? = 2uD +n(n + 1)] P(p) = 0
Therefore Ly(m; D™ P, (1)) = 0 as required.

General Surface Harmonic of degree n

Giving m the values 0,1, - -n in r"e*™% P™(cos §) we have

" P,(cos®), reF®P!(cosf), - rmet™ P (cosb).

These are 2n + 1 in number and are linearly independent (from the orthog-
onality of 1, e* ... over 0 < ¢ < 2m).

Therefore .

Sp = AoPu(p) + 3 (Crne™® + Cl e ™) P (1)

m=1
n

= AoPu(p) + Y (Ap cosme + By, sinme) Py (i)

m=1

Solutions of Legendre’s equation when n # integer
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