
Solutions of Laplace’s Equation and others in Spherical
Co-ordinates
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We have 52
(

1

R

)

= 0 and so
∂n

∂cn
52 1

r
= 0 or 52 ∂

n

∂cn
1

R
= 0

i.e.
1

n!

∂n

∂cn

(

1

R

)

is a solution of Laplaces equation and in particular

1

n!

[

∂n

∂cn

(

1

R

)

]

c=0

is a solution.

[N.B. ∂
∂c
( 1
R
) = − ∂

∂z
( 1
R
) and so [ ∂

n

∂cn
(1
r
)]c=0 = (−1)n ∂n

∂zn

1
r
i.e. the above solution

can be written (−1)n

n!
∂n

∂cn
1
r
]
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1

R
=

1

[(r − ceiθ)(r − ce−iθ)]
1
2

and (r − ceiθ)−
1
2 has a power series expansion

in powers of c, which is absolutely convergent for

∣

∣

∣

∣

∣

ceiθ

r

∣

∣

∣

∣

∣

< 1 i.e. for
|c|
r
< 1

when θ is real.
Similarly for (r − ce−iθ)−

1
2 .

Therefore
1

R
=

1

(r − ceiθ)
1
2 (r − ce−iθ)

1
2

has a power series expansion in c

which is also convergent for
|c|
r

< 1 (θ real) and the coefficient of cn is

1

n!

[

∂n

∂cn
1

R

]

c=0

.

Therefore the coefficient of cn in the above expansion of 1
R
in powers of c is

a solution of Laplace’s equation
1

R
=

1

r
[

1− 2c
r
cos θ + c2

r2

]
1
2

and so
1

R
=
1

r

∞
∑

n=0

(

c

r

)n

Pn(cos θ) for
|c|
r
< 1 and

θ real.

Thus
Pn(cos θ)

rn+1
is a solution of Laplace’s equation and is axially symmetric.

Similarly, by considering the expansion of 1
R
for positive powers of 1

c
with

|c| > r, θ real, we find that rnPn(cos θ) is also an axially symmetric solution.

Alternative Argument

If V is a solution of 52V = 0, homogeneous and of degree n, then
V

r2n+1
is

also a solution of 52V = 0 of degree −(n+ 1).
Proof
52V rm = rm52 V + V 52 rm + 2~5V ~5rm = rm52 V + V m(m+ 1)rm−2 +
2mrm−1 ∂V

∂r

and since V is homogeneous of degree n, r
∂V

∂r
= nV . So if 52V = 0, then

52V rm = rm−2[m(m+ 1) + 2mn]V = 0 if m = 0,−2n− 1.
From

1

(r2 + c2 − 2rc cos θ) 1
2

=
1

r

∞
∑

n=0

(

c

r

)n

Pn(cos θ) (|c| < r, θ real)

Putting r = 1, c = h, cos θ = µ, we have the definition of the Pn’s.
1

(1− 2µh+ h2)1
2

=
∞
∑

n=0

hnPn(µ) (|h| < 1, µ real −1 ≤ µ ≤ 1)

This expansion is valid for all h and µ, where |h| < |µ± (µ2 − 1) 1
2 |, since
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(µ+ (µ2 − 1)1
2
− h)(µ− (µ2 − 1) 1

2 − h) = 1− 2µh+ h2

Properties of Pn(µ)

1) Pn(µ) is a polynomial in µ of degree n, in alternate powers n, n−2, · · · 1
or 0. i.e.P2n(µ) contains even powers and is an even function. P2n+1(µ)
contains odd powers and is an odd function.

2) Pn(1) = 1 Pn(−1) = (−1)n

3) |Pn(µ)| ≤ 1 − 1 ≤ µ ≤ 1

4) Legendre’s Equation

Pn(µ) is a solution of
d

dµ
(1− µ2)

d

dµ
w + n(n+ 1)w = 0

5) Orthogonal Properties
∫ 1

−1
Pn(µ)Pm(µ)dµ =

{

0 m 6= n
2

2n+1
m = n

6) Rodriguez’s Formula

Pn(µ) =
1

2nn!

dn

dµn
(µ2 − 1)n

7) Recurrence Formulae

(n+ 1)Pn+1(µ)− (2n+ 1)µPn(µ) + nPn−1(µ) = 0

P ′n+1(µ)− P ′n−1(µ) = (2n+ 1)Pn(µ)

(µ2 − 1)P ′n(µ) = n[µPn(µ)− Pn−1(µ)]

Proofs

1) Write c0 = 1, cr =
1.3 · · · 2r − 1
2.4 · · · 2r =

Γ
(

r + 1
2

)

r!Γ
(

1
2

)

Then (1− z)−
1
2 =

∞
∑

0

crz
r |z| < 1

1

(1 + h2 − 2µh) 1
2

=
1

[(1− heiθ)(1− he−iθ)]
1
2
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where cos θ = µ (θ real if −1 ≤ µ ≤ 1, but we don’t assume this).

So
1

(1 + h2 − 2µh) 1
2

=
∞
∑

0

crh
reirθ

∞
∑

0

csh
seisθ |h| < |µ± (µ2 − 1) 1

2 |

Pn(µ)= coefficient of h
n on RHS

= cnc0e
inθ + cn−1c1e

i(n−1)θe−iθ + cn−2c2e
i(n−2)θe−i2θ + · · ·+ c0cne−inθ

= c0cn[e
inθ + e−inθ] + c1cn−1[e

i(n−2)θ + e−i(n−2)θ] + · · ·

+

{

c2n
2

n even
cn−1

2
cn+12(e

iθ + e−iθ) n odd

= 2c0cn cosnθ + 2c1cn−1 cos(n− 2)θ + · · ·+
{

c2n
2
cn−1

2
cn+12 cos θ

cosnθ = polynomial in cos θ of degree n, in alternate powers

n, n− 2, · · · 0 or 1 for odd and even.
Therefore Pn(µ) is a polynomial in µ of degree n, in alternate powers
n, n− 2 · · ·

2) Putting µ = 1 we have
1

1− h
=

∞
∑

0

hnPn(1), therefore Pn(1) = 1

Since Pn(−µ) = (−1)nPn(µ) Pn(−1) = (−1)n

Values of P0, P1, P2, P3:

1

[1 + (h2 − 2µh)] 12
=

∞
∑

0

cr(2µh− h2)r

= 1 + hc1(2µ− h) + h2c2(4µ
2 − 4µh+ h2) + h3c3(8µ

3 + · · ·)
Therefore

P0(µ) = 1

P1(µ) = 2c1µ = µ

P2(µ) = −c1 + 4c2µ2 = −1
2
+ 4.1.3

2.4
µ2 = 3µ2−1

2

P3(µ) =
5
2
µ3 − 3

2
µ

3) From Pn(µ) = 2c0cn cosnθ + · · ·
|Pn(µ)| ≤ 2c0cn| cosnθ|+ · · ·
As c0c1 · · · are all positive. If −1 ≤ µ ≤ 1 µ cos θ is real and
| cosnθ| ≤ 1. Therefore |Pn(µ)| ≤ 2c0cn + · · · = Pn(1) = 1
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4) Legendre’s equation

We have the result that rnPn(cos θ) is a solution of52V = 0 in spherical
polar co-ordinates.

Therefore
1

r2

∂

∂r

{

r2 ∂

∂r
rnPn(cos θ)

}

+
1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
rnPn(cos θ) = 0

Therefore n(n+ 1)rn−2Pn(µ) + r
n+2 d

dµ
(1− µ2)

d

dµ
Pnµ = 0

Therefore Pn(µ) satisfies
d

dµ
(1− µ2)

dw

dµ
+ n(n+ 1)w = 0

[N.B. This equation has solutions linearly independent of Pn(µ) since
it is of the second order. These solutions are unbounded at µ ± 1
corresponding to θ = 0 or π (i.e. the 2-axis).

5) Orthogonal Property

i)
d

dµ
(1− µ2)

d

dµ
Pn(µ) + n(n+ 1)Pn(µ) = 0

ii)
d

dµ
(1− µ2)

d

dµ
Pm(µ) +m(m+ 1)Pm(µ) = 0

(i)Pm(µ)− (ii)Pn(µ) gives
d

dµ
(1− µ2)

{

Pm
d

dµ
Pn − Pn

d

dµ
Pm

}

+ [n(n+ 1)−m(m+ 1)]PmPn = 0

So (n−m)(n+m+ 1)
∫ 1

−1
PmPndµ+ [(1− µ2)(PmP

′

n − PnP
′

m)]
1
−1 = 0

Therefore
∫ 1

−1
PmPndµ = 0 m 6= n

Value of
∫ 1

−1
P 2
n(µ)dµ

1

(1− 2µh+ h2)
=

[

∞
∑

0

hnPn(µ)

]2

∫ 1

−1

dµ

1− 2µh+ h2
=
∫ 1

−1

[

∞
∑

0

hnPn(µ)

]2

dµ
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LHS=
[

− 1
2h
log(1− 2µh+ h2)

]1

−1
=
1

2h
log
(1 + h)2

(1− h)2

=
1

h
log
1 + h

1− h
= 2

∞
∑

0

h2n

2n+ 1

RHS=
∫ 1

−1

∞
∑

n=0

hnPn(µ)
∞
∑

m=0

hmPm(µ)dµ

=
∞
∑

n=0

hn
∫ 1

−1
Pn(µ)

∞
∑

m=0

hmPm(µ)dµ

=
∞
∑

n=0

hn
∞
∑

m=0

hm
∫ 1

−1
Pn(µ)Pm(µ)dµ

=
∞
∑

n=0

h2n
∫ 1

−1
P 2
n(µ)dµ therefore

∫ 1

−1
P 2
n(µ)dµ =

2

2n+ 1

6) Rodriguez’s Formula

Pm is perpendicular to Pn, m 6= n, Pn(1) = 1, Pn(µ) is of degree n.
Define F (µ) of degree 2n such that F (n)(µ) = Pn(µ)

F (1) = F ′(1) = · · · = F ′(n− 1) = 0.
In fact F (µ) = 1

(n−1)!

∫ µ
1 (µ− λ)n−1Pn(λ)dλ

i) F (µ) has a zero of order n at µ = +1

ii) We show from the orthogonal properties that F (µ) has a zero of
order n at µ = −1.

Assuming this we have

F (µ) = (µ− 1)n(µ+ 1)n∗ poly. of degree 0
= c(µ− 1)n(µ+ 1)n = c(µ2 − 1)n

Therefore Pn(µ) = c
dn

dµn
(µ2 − 1)n

To find c let µ = 1

1 = c

[

dn

dµn
(µ− 1)n(µ+ 1)n

]

µ=1

= cn!2n

Therefore c =
1

n!2n
using Leibniz theorem.
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Proof of (ii)

Since P0, P1 · · · are linearly independent polynomials, any polynomial
f(µ) of degree r can be expressed uniquely as c0P0+ c1P1+ · · ·+ crPr.
Pn is perpendicular to Pr, r < n, therefore Pn is perpendicular to
any polynomial of degree r < n. In particular Pn is perpendicular to
(1 + µ)r, r < n.

i.e.
∫ 1

−1
Pn(µ)(1 + µ)

rdµ = 0, r < n

i.e.
∫ 1

−1
F (n)(µ)(1 + µ)rdµ = 0, r < n

Denote this by In,r, where In,r = 0 for 0 < r < n

In,r = −r
∫ 1

−1
F (n−1)(µ)(1 + µ)r−1dµ

Therefore In−1,r−1 = 0 for 1 < r < n

By r integrations by parts
∫ 1

−1
F (n−r)(µ)dµ = 0

[F (n−r−1)(µ)]1
−1 = 0 F (n−r−1)(1) = F (n−r−1)(−1) = 0 r = 0, 1, · · ·n−1

Hence (ii) follows.

Suppose f(µ) has derivatives of all orders in [−1, 1].
∫ 1

−1
f(µ)Pn(µ)dµ =

1

2nn!

∫ 1

−1
f(µ)Dn(µ− 1)ndµ

=
1

2nn!

∫ 1

−1
[−f ′(µ)]Dn−1(µ2 − 1)ndµ+ 0

=
(−1)n
2nn!

∫ 1

−1
f (n)(µ)(µ2 − 1)dµ = 1

2nn!

∫ 1

−1
(1− µ2)nf (n)(µ)dµ

e.g.
∫ 1

−1
P 2
n(µ) =

1

2nn!

∫ 1

−1
(1− µ2)nDnPn(µ)dµ =

2

2n+ 1

7) Recurrence Formulae

We have G(µ, h) ≡ (1− 2µh+ h2)−
1
2 =

∞
∑

0

hnPn(µ)

7



(a)
∂G

∂h
=

µ− h

(1− 2µh+ h2)
G

i.e. (1− 2µh+ h2)
∞
∑

1

nPn(µ)h
n−1 = (µ− h)

∞
∑

0

hnPn(µ)

Equating coefficients of hn on each side

(n+ 1)Pn+1(µ)− 2µnPn(µ) + (n− 1)Pn−1(µ) = µPn(µ)− Pn−1(µ) (i)

2P2(µ)− 2µP1(µ) = µP1(µ)− P0(µ) (ii)

P1(µ) = µP0(µ) (iii)

(i) gives (m+ 1)Pm+1(µ)− (2n+ 1)µPn(µ) + nPn−1(µ) = 0

(b)
∂g

∂µ
=

h

(1− 2µh+ h2)
G

∂G

∂h
=

µ− h

(1− 2µh+ h2)
G

(

1

h
− h

)

∂G

∂µ
− 2h∂G

∂h
=
1− h2 − 2h(µ− h)

(1− 2µh+ h2)
G = G

Therefore
(

1

h
− h

)

∂G

∂µ
=

(

2h
∂

∂h
+ 1

)

G

(

1

h
− h

) ∞
∑

1

hnP ′n(µ) =
∞
∑

0

(2n+ 1)hnPn(µ)

therefore P ′n+1(µ)− P ′n−1(µ) = (2n+ 1)Pn(µ)

P ′2(µ) = 3P1(µ)

This formula gives
∫ µ

1
Pn(λ)dλ =

1

2n+ 1
{Pn + 1(µ)− Pn−1(µ)}

(c)
µ2 − 1
h

∂G

∂µ
− (µ− h)

∂G

∂h
= −G

Therefore (µ2 − 1)P ′n(µ) = n(µPn(µ)− Pn−1(µ))

= n

{

(n+ 1)Pn+1(µ) + nPn−1(µ)

2n+ 1
− Pn−1(µ)

}

=
n(n+ 1)

2n+ 1
{Pn+1(µ)− Pn−1(µ)}

Differentiating the above gives

d

dµ
(µ2 − 1)dPn(µ)

dµ
=
n(n+ 1)

2n+ 1
{P ′n+1(µ)− P ′n−1(µ)} = n(n+ 1)Pn(µ)

8



which is Legendre’s equation.

[Note that
∂

∂µ
(µ2 − 1)∂G

∂µ
= h

∂

∂h

(

h
∂

∂h
+ 1

)

G and this leads to the

differential equation.]

Zeros of Pn(µ)

Pn(µ) =
1

2nn!

dn

dµn
(µ2 − 1)n

(µ2 − 1)n has n zeros at −1 and n zeros at +1.

therfore
d

dµ
(µ2 − 1)n has n − 1 zeros at −1, n − 1 zeros at +1 and

therefore one (say µ) in (−1, 1), as it has 2n− 1 altogether.

Continuing this process
dn

dµn
(µ2 − 1)n has n zeros in −1 < µ < 1, all

simple.

Axially Symmetric Potentials (in spherical co-ordinates)
DIAGRAM
Let U be a solution of 52U = 0, existing in a ≤ r ≤ b and axially symmetric
about Oz.
If (r, θ, φ) are spherical polar co-ordinates, where θ = 0 and θ = π is the

same z-axis, then U has the form
∞
∑

0

(

Anr
n +

Bn

rn+1

)

Pn(cos θ)

on θ = 0 this becomes U(r, 0) =
∞
∑

0

(

Anr
n +

Bn

rn+1

)

.

Conversely if U(r, 0) has this form and exists in a ≤ r ≤ b then

U(r, θ) =
∞
∑

0

(

Anr
n +

Bn

rn+1

)

Pn(cos θ)

Example
DIAGRAM

U =
∫

dS

|~r − ~r0|
where ~r is the position vector of the field point, and where ~r0 is the position
vector of a point on the disc, and the integral is taken over the disc with
boundary r = C, θ = α, referred to Oz.
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DIAGRAM

U(r, 0) = 2π
∫ a

)

pdp

(p2 + h2)
1
2

= 2π[
√
a2 + h2 − |h|] = 2π(R− h)

h = c cosα− r

Therefore U(r, 0) = 2π[(r2 + c2 − 2rc cosα) 1
2 − (c cosα− r)]

(r2 + c2 − 2rc cosα) 1
2 = (r2 + c2 − 2rc cosα)(r2 + c2 − 2rc cosα) 1

2

= (r2 + c2 − 2rc cosα)























∞
∑

n=0

cn

rn+1
Pn(cosα) r < c

∞
∑

n=0

rn

cn+1
Pn(cosα) r > c

For r > c, putting λ = cosα,
(r2 + c2 − 2rc cosα) 1

2

r
=

(

1 +
c2

r2
− 2λe

r

)

∞
∑

0

(

c

r

)n

Pn(λ)

= P0(λ)+
c

r
{P1(λ)− 2λP0(λ)}+

∞
∑

r=2

(

c

r

)n

{Pn(λ)− 2λPn−1(λ)+Pn−2(λ)}

Therefore (r2 + c2 − 2rc cosα) 1
2 − (r − cλ)

= r

(

1 +
c

R
(−λ) +

∞
∑

n=2

{Pn(λ)− 2λPn−1(λ) + Pn−2(λ)}
)

− (r − cλ)

(r > c⇒ r > cλ)

= r
∞
∑

n=2

cn

rn
Fn(λ), Fn(λ) = Pn(λ)− 2λPn−1(λ) + Pn−2(λ)

Therefore
U(r, 0)

2π
=

∞
∑

n=2

cn

rn−1
Fn(λ) =

∞
∑

n=0

cn+2

rn+1
Fn+2(λ) r > c

Therefore
U(r, 0)

2π
=

∞
∑

n=0

cn+2

rn+1
Pn(cos θ)Fn+2(cosα)

[For large r, RHS≈ c2

r
F2(cosα)

F2(cosα) = P2(cosα)− 2 cosαP1(cosα) + P0(cosα)

=
3 cos2 α− 1

2
− 2 cos2 α + 1 = 1

2
− 1
2
cos2 α =

1

2
sin2 α

Therefore U(r, θ) ∼ πc2 sin2 α

r
=
πa2

r
as r →∞]

Fn+2(λ) = Pn+2 − 2λPn+1 + Pn

= Pn+2 + Pn − 2
{

(n+ 2)Pn+2 + (n+ 1)Pn
2n+ 3

}

=
−Pn+2 + Pn
2n+ 3

=
(1− λ2)P ′n+1(λ)

(n+ 1)(n+ 2)

10



Example of Boundary Problem
To find a potential V existing in 0 ≤ r ≤ a such that V + U = 0 on r = a

where U(r, θ) is the potential considered above.

V (r, θ) must be of the form
∞
∑

n=0

rn

an
AnPn(cos θ)

Hence we require
∞
∑

0

AnPn(cos θ) + U(a, θ) = 0

U(a, θ)

2π
=

∞
∑

n=0

cn+2

an+1
Pn(cos θ)Fn+2(λ)

Therefore
V

2π
= −

∞
∑

0

rn
cn+2

a2n+1
Pn(cos θ)Fn+2(λ).

Definition - Solid Harmonic of degree n
If f(x, y, z) is a polynomial in x, y, z homogeneous and of degree n, and if
52f = 0, then f is said to be a solid harmonic of degree n.
Example: 1; x, y, z; yz, zx, xy, z2 − x2, z2 − y2, etc.

Definition - Surface Harmonic of degree n
If f(x, y, z) = rnSn(u) or r

nSn(θ, φ) where Sn depends only on the unit vector
u along the position vector, or on the spherical polar angles θ, φ, Sn is called
a surface harmonic of degree n.

Differential Equation satisfied by Sn

Substitute f = rnSn in 52f = 0.
{

1

r2

∂

∂r
r2 ∂

∂r
+

1

r2 sin θ

∂

∂θ
sin θ

d

dθ
+

1

r2 sin2 θ

∂2

∂φ2

}

f = 0

Therefore

{

1

sin θ

∂

∂θ
sin θ

d

dθ
+

1

sin2 θ

∂2

∂φ2
+ n(n+ 1)

}

Sn = 0 (1)

This equation admits solutions of the form s(θ)e±imφ, m constant, where
1

sin θ

d

dθ
sin θ

ds

dθ
+

(

n(n+ 1)− m2

sin2 θ

)

s = 0

Putting cos θ = µ, so
1

sin θ

d

dθ
= − d

dµ
this becomes

d

dµ
(1− µ2)

ds

dµ
+

(

n(n− 1)− m2

1− µ2

)

s = 0 (2)

Equation (2) is called Legendre’s associated equation. For m = 0 it reduces
to Legendre’s equation. In this case Sn is independent of φ, i.e. is axially

11



symmetric. One solution is Pn(µ).

The number of linearly independent Surface Harmonics of degree
n is 2n+ 1
f can always be written

f = φn(x, y) +
z

1!
φn−1(x, y) +

z2

2!
φn−2(x, y) + · · ·

where φr is a homogeneous polynomial in x, y of degree r.

52f = 52
1 +

∂2

∂z2
= (52

1φn + φn−2) +
z

1!
(52

1φn−1 + φn−3)

+ · · ·+ zn−3

(n− 3)!(5
2
1φ3 + φ1) +

zn−2

(n− 2)!(5
2
1φ2 + φ0)

Since this must vanish identically
52

1φn + φn−2 = 0 52
1 φn−1 + φn−3 = 0

52
1φn−2 + φn−4 = 0 · · · 52

1 φn−3 + φn−5 = 0 · · ·
Therefore φn, φn−1 are arbitrary polynomials in x, y of degrees n and n− 1,
and for the others we have
φn−2r = (−1)r(52

1)
rφn

φn−2r−1 = (−1)r(52
1)
rφn−1

Therefore

f = φn−
z2

2!
52

1φn+
z4

4!
(52

1)
2φn−· · ·+

z

1!
φn−1−

z3

3!
(52

1)φn−1+
z5

5!
(52

1)
2φn−1−· · ·

where both series must terminate.
φn can have any one of the forms x

n, xn−1y, · · · yn. There are n+ 1 of these,
and they are linearly independent.
φn−1 can have any one of the forms x

n−1, xn−2y, · · · yn−1. There are n of
these, and they are linearly independent.
Therefore the total number of forms is 2n+ 1 and the corresponding f ’s are
linearly independent.

Associated Legendre Functions [Ferrer’s definition]

Pm
n (µ) = (1− µ2)

m

2
dm

dµm
Pn(µ) = (1− µ2)

m

2
1

2nn!

dm+n

dµm+n
(µ2 − 1)n

is the associated Legendre function of the first kind of degree n, order m.
There are n+ 1 such functions for m = 0, 1, 2 · · ·n.
We show

i) rne±miφPm
n (cos θ) = polynomial in x, y, z of degree n.
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ii) 52rne±miφPm
n (cos θ) = 0

i) Pm
n (cos θ) = sin

m θ [Poly. in cos θ; cosn−m θ · · ·
{

cos θ n−m odd
1 n−m even

rneimφPm
n cos θ = (r sin θ)

meimφrn−m[· · ·]

= (x+iy)m [Poly in z, r2; zn−m, zn−m−2r2 · · ·
{

zrn−m−1 n−m odd
rn−m n−m even

= poly in x, y, z, sin θ, r2 = x2 + y2 + z2

ii) To show 52rne±imφ(1− µ2)
m

2
dm

dµm
Pn(µ) = 0

This is so if e±imφ(1− µ2)
m

2
dm

dµm
Pn(µ)

satisfies

[

∂

∂µ
(1− µ2)

∂

∂µ
+

(

n(n+ 1) +
1

1− µ2

)

ap2

∂φ2

]

( ) = 0

i.e. if (1− µ2)
m

2 DmPn(µ) satisfies

L(m;w) =

[

d

dµ
(1− µ2)

d

dµ
+ n(n+ 1)− m2

1− µ2

]

w = 0

This is know as Legendre’s Associated equation.

Now

L(m : (1− µ2)
m

2 W ) =
d

dµ

{

(1− µ2)
m

2
+1dW

dµ
−mµ(1− µ2)

m

2 W

}

+

{

n(n+ 1)− m2

1− µ2

}

(1− µ2)
m

2 W

= (1− µ2)
m

2
+1d

2W

dµ2
+ (−µ(m+ 2)−mµ)(1− µ2)

m

2
dW

dµ

−mW ((1− µ2)
m

2 −mµ2(1− µ2)
m

2
−1)

+

{

n(n+ 1)− m2

1− µ2

}

(1− µ2)
m

2 W

= (1− µ2)
m

2 L1(m : W )
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where L1(m : W )

=

{

(1− µ2)
d2

dµ2
− 2(m+ 1)|mu d

dµ
+ n(n+ 1)−m(m+ 1)

}

W

We must now show that

L1(m : D
mPn(µ)) = 0

Since L1(m;W ) = 0⇒ DL1(m : W ) = 0 we get

[(1− µ2)D3 + (−2µD2 − 2(m+ 1)µD2)

+n(n+ 1)−m(m+ 1)− 2(m+ 1)D]W = 0

i.e. [(1− µ2)D2 − 2µ(m+ 2)D + n(n+ 1)− (m+ 1)(m+ 2)]DW = 0

i.e. L1(m+ 1;DW ) = 0

i.e. L1(m;W ) = 0⇒ L1(m+ 1;DW ) = 0

i.e. L1(0,W ) = 0⇒ L1(m;D
mW ) = 0

L1(0;Pn(µ)) = [(1− µ2)D2 − 2µD + n(n+ 1)]Pn(µ) = 0
Therefore L1(m;D

mPn(µ)) = 0 as required.

General Surface Harmonic of degree n
Giving m the values 0, 1, · · ·n in rne±miφPm

n (cos θ) we have
rnPn(cos θ), r

ne±iφP ′n(cos θ), · · · rne±niφP n
n (cos θ).

These are 2n + 1 in number and are linearly independent (from the orthog-
onality of 1, e±iφ · · · over 0 ≤ φ ≤ 2π).
Therefore

Sn = A0Pn(µ) +
n
∑

m=1

(Cme
miφ + C ′me

−miφ)Pm
n (µ)

= A0Pn(µ) +
n
∑

m=1

(Am cosmφ+Bm sinmφ)P
m
n (µ)

Solutions of Legendre’s equation when n 6= integer
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