Solutions of Laplace's Equation and others in Spherical

 Co-ordinates| $\nabla^{2} V=0$ | Laplace's Equation |
| :--- | :--- |
| $\nabla^{2} V=\frac{1}{c^{2}} \frac{\partial^{2} V}{\partial t^{2}}$ | Wave Equation |
| $\nabla^{2} V=\frac{1}{K} \frac{\partial V}{\partial t}$ | Diffusion Equation |
| $\nabla^{2} \psi+\{l-v(x, y, z)\} \psi=0$ | Wave Mechanics Equation |
| $\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}$ | |

Axially Symmetric Solutions of $\nabla^{2} V=0$

$\frac{1}{R}=\frac{1}{\left|\vec{r}-\overrightarrow{r_{0}}\right|}$ is a solution of Laplaces equation in the coordinates x, y, z.

Consider $\frac{1}{r}=\frac{1}{\left(r^{2}+c^{2}-2 c r \cos \theta\right)^{\frac{1}{2}}}=\frac{1}{\left(x^{2}+y^{2}+(z-c)^{2}\right)^{\frac{1}{2}}}$

We have $\nabla^{2}\left(\frac{1}{R}\right)=0$ and so $\frac{\partial^{n}}{\partial c^{n}} \nabla^{2} \frac{1}{r}=0$ or $\nabla^{2} \frac{\partial^{n}}{\partial c^{n}} \frac{1}{R}=0$
i.e. $\frac{1}{n!} \frac{\partial^{n}}{\partial c^{n}}\left(\frac{1}{R}\right)$ is a solution of Laplaces equation and in particular
$\frac{1}{n!}\left[\frac{\partial^{n}}{\partial c^{n}}\left(\frac{1}{R}\right)\right]_{c=0}$ is a solution.
[N.B. $\frac{\partial}{\partial c}\left(\frac{1}{R}\right)=-\frac{\partial}{\partial z}\left(\frac{1}{R}\right)$ and so $\left[\frac{\partial^{n}}{\partial c^{n}}\left(\frac{1}{r}\right)\right]_{c=0}=(-1)^{n} \frac{\partial^{n}}{\partial z^{n}} \frac{1}{r}$ i.e. the above solution can be written $\left.\frac{(-1)^{n}}{n!} \frac{\partial^{n}}{\partial c^{n}} \frac{1}{r}\right]$
$\frac{1}{R}=\frac{1}{\left[\left(r-c e^{i \theta}\right)\left(r-c e^{-i \theta}\right)\right]^{\frac{1}{2}}}$ and $\left(r-c e^{i \theta}\right)^{-\frac{1}{2}}$ has a power series expansion in powers of c, which is absolutely convergent for $\left|\frac{c e^{i \theta}}{r}\right|<1$ i.e. for $\frac{|c|}{r}<1$ when θ is real.
Similarly for $\left(r-c e^{-i \theta}\right)^{-\frac{1}{2}}$.
Therefore $\frac{1}{R}=\frac{1}{\left(r-c e^{i \theta}\right)^{\frac{1}{2}}\left(r-c e^{-i \theta}\right)^{\frac{1}{2}}}$ has a power series expansion in c which is also convergent for $\frac{|c|}{r}<1\left(\theta\right.$ real) and the coefficient of c^{n} is $\frac{1}{n!}\left[\frac{\partial^{n}}{\partial c^{n}} \frac{1}{R}\right]_{c=0}$.
Therefore the coefficient of c^{n} in the above expansion of $\frac{1}{R}$ in powers of c is a solution of Laplace's equation
$\frac{1}{R}=\frac{1}{r\left[1-\frac{2 c}{r} \cos \theta+\frac{c^{2}}{r^{2}}\right]^{\frac{1}{2}}}$ and so $\frac{1}{R}=\frac{1}{r} \sum_{n=0}^{\infty}\left(\frac{c}{r}\right)^{n} P_{n}(\cos \theta)$ for $\frac{|c|}{r}<1$ and
θ real.
Thus $\frac{P_{n}(\cos \theta)}{r^{n+1}}$ is a solution of Laplace's equation and is axially symmetric. Similarly, by considering the expansion of $\frac{1}{R}$ for positive powers of $\frac{1}{c}$ with $|c|>r, \theta$ real, we find that $r^{n} P_{n}(\cos \theta)$ is also an axially symmetric solution.

Alternative Argument

If V is a solution of $\nabla^{2} V=0$, homogeneous and of degree n, then $\frac{V}{r^{2 n+1}}$ is also a solution of $\nabla^{2} V=0$ of degree $-(n+1)$.

Proof

$\nabla^{2} V r^{m}=r^{m} \nabla^{2} V+V \nabla^{2} r^{m}+2 \vec{\nabla} V \vec{\nabla} r^{m}=r^{m} \nabla^{2} V+V m(m+1) r^{m-2}+$ $2 m r^{m-1} \frac{\partial V}{\partial r}$
and since V is homogeneous of degree $n, r \frac{\partial V}{\partial r}=n V$. So if $\nabla^{2} V=0$, then $\nabla^{2} V r^{m}=r^{m-2}[m(m+1)+2 m n] V=0$ if $m=0,-2 n-1$.
From $\frac{1}{\left(r^{2}+c^{2}-2 r c \cos \theta\right)^{\frac{1}{2}}}=\frac{1}{r} \sum_{n=0}^{\infty}\left(\frac{c}{r}\right)^{n} P_{n}(\cos \theta) \quad(|c|<r, \theta$ real $)$
Putting $r=1, c=h, \cos \theta=\mu$, we have the definition of the P_{n} 's.
$\frac{1}{\left(1-2 \mu h+h^{2}\right) \frac{1}{2}}=\sum_{n=0}^{\infty} h^{n} P_{n}(\mu) \quad(|h|<1, \mu$ real $-1 \leq \mu \leq 1)$
This expansion is valid for all h and μ, where $|h|<\left|\mu \pm\left(\mu^{2}-1\right)^{\frac{1}{2}}\right|$, since

$$
\left(\mu+\left(\mu^{2}-1\right) \frac{1}{2}-h\right)\left(\mu-\left(\mu^{2}-1\right)^{\frac{1}{2}}-h\right)=1-2 \mu h+h^{2}
$$

Properties of $\mathbf{P}_{\mathbf{n}}(\mu)$

1) $P_{n}(\mu)$ is a polynomial in μ of degree n, in alternate powers $n, n-2, \cdots 1$ or 0 . i.e. $P_{2 n}(\mu)$ contains even powers and is an even function. $P_{2 n+1}(\mu)$ contains odd powers and is an odd function.
2) $P_{n}(1)=1 \quad P_{n}(-1)=(-1)^{n}$
3) $\left|P_{n}(\mu)\right| \leq 1 \quad-1 \leq \mu \leq 1$
4) Legendre's Equation
$P_{n}(\mu)$ is a solution of $\frac{d}{d \mu}\left(1-\mu^{2}\right) \frac{d}{d \mu} w+n(n+1) w=0$
5) Orthogonal Properties

$$
\int_{-1}^{1} P_{n}(\mu) P_{m}(\mu) d \mu=\left\{\begin{array}{cl}
0 & m \neq n \\
\frac{2}{2 n+1} & m=n
\end{array}\right.
$$

6) Rodriguez's Formula

$$
P_{n}(\mu)=\frac{1}{2^{n} n!} \frac{d^{n}}{d \mu^{n}}\left(\mu^{2}-1\right)^{n}
$$

7) Recurrence Formulae

$$
\begin{aligned}
& (n+1) P_{n+1}(\mu)-(2 n+1) \mu P_{n}(\mu)+n P_{n-1}(\mu)=0 \\
& P_{n+1}^{\prime}(\mu)-P_{n-1}^{\prime}(\mu)=(2 n+1) P_{n}(\mu) \\
& \left(\mu^{2}-1\right) P_{n}^{\prime}(\mu)=n\left[\mu P_{n}(\mu)-P_{n-1}(\mu)\right]
\end{aligned}
$$

Proofs

1) Write $c_{0}=1, c_{r}=\frac{1.3 \cdots 2 r-1}{2.4 \cdots 2 r}=\frac{\Gamma\left(r+\frac{1}{2}\right)}{r!\Gamma\left(\frac{1}{2}\right)}$

Then $(1-z)^{-\frac{1}{2}}=\sum_{0}^{\infty} c_{r} z^{r} \quad|z|<1$
$\frac{1}{\left(1+h^{2}-2 \mu h\right)^{\frac{1}{2}}}=\frac{1}{\left[\left(1-h e^{i \theta}\right)\left(1-h e^{-i \theta}\right)\right]^{\frac{1}{2}}}$
where $\cos \theta=\mu \quad$ (θ real if $-1 \leq \mu \leq 1$, but we don't assume this).

$$
\begin{aligned}
& \text { So } \frac{1}{\left(1+h^{2}-2 \mu h\right)^{\frac{1}{2}}}=\sum_{0}^{\infty} c_{r} h^{r} e^{i r \theta} \sum_{0}^{\infty} c_{s} h^{s} e^{i s \theta} \quad|h|<\left|\mu \pm\left(\mu^{2}-1\right)^{\frac{1}{2}}\right| \\
& P_{n}(\mu)=\text { coefficient of } h^{n} \text { on RHS } \\
& =c_{n} c_{0} e^{i n \theta}+c_{n-1} c_{1} e^{i(n-1) \theta} e^{-i \theta}+c_{n-2} c_{2} e^{i(n-2) \theta} e^{-i 2 \theta}+\cdots+c_{0} c_{n} e^{-i n \theta} \\
& =c_{0} c_{n}\left[e^{i n \theta}+e^{-i n \theta}\right]+c_{1} c_{n-1}\left[e^{i(n-2) \theta}+e^{-i(n-2) \theta}\right]+\cdots \\
& + \begin{cases}\frac{c_{n}^{2}}{2} & n \text { even } \\
\frac{c_{n-1}}{2} c_{n+1} 2\left(e^{i \theta}+e^{-i \theta}\right) & n \text { odd }\end{cases} \\
& =2 c_{0} c_{n} \cos n \theta+2 c_{1} c_{n-1} \cos (n-2) \theta+\cdots+\left\{\begin{array}{l}
\frac{c_{n}^{2}}{2} \\
\frac{c_{n-1}}{2} c_{n+1} 2 \cos \theta
\end{array}\right. \\
& \cos n \theta=\text { polynomial in } \cos \theta \text { of degree } n \text {, in alternate powers } \\
& n, n-2, \cdots 0 \text { or } 1 \text { for odd and even. }
\end{aligned}
$$

Therefore $P_{n}(\mu)$ is a polynomial in μ of degree n, in alternate powers $n, n-2 \cdots$
2) Putting $\mu=1$ we have $\frac{1}{1-h}=\sum_{0}^{\infty} h^{n} P_{n}(1)$, therefore $P_{n}(1)=1$

Since $P_{n}(-\mu)=(-1)^{n} P_{n}(\mu) \quad P_{n}(-1)=(-1)^{n}$
Values of $P_{0}, P_{1}, P_{2}, P_{3}$:
$\frac{1}{\left[1+\left(h^{2}-2 \mu h\right)\right]^{\frac{1}{2}}}=\sum_{0}^{\infty} c_{r}\left(2 \mu h-h^{2}\right)^{r}$
$=1+h c_{1}(2 \mu-h)+h^{2} c_{2}\left(4 \mu^{2}-4 \mu h+h^{2}\right)+h^{3} c_{3}\left(8 \mu^{3}+\cdots\right)$
Therefore
$P_{0}(\mu)=1$
$P_{1}(\mu)=2 c_{1} \mu=\mu$
$P_{2}(\mu)=-c_{1}+4 c_{2} \mu^{2}=-\frac{1}{2}+\frac{4.1 .3}{2.4} \mu^{2}=\frac{3 \mu^{2}-1}{2}$
$P_{3}(\mu)=\frac{5}{2} \mu^{3}-\frac{3}{2} \mu$
3) From $P_{n}(\mu)=2 c_{0} c_{n} \cos n \theta+\cdots$
$\left|P_{n}(\mu)\right| \leq 2 c_{0} c_{n}|\cos n \theta|+\cdots$
As $c_{0} c_{1} \cdots$ are all positive. If $-1 \leq \mu \leq 1 \mu \cos \theta$ is real and $|\cos n \theta| \leq 1$. Therefore $\left|P_{n}(\mu)\right| \leq 2 c_{0} c_{n}+\cdots=P_{n}(1)=1$
4) Legendre's equation

We have the result that $r^{n} P_{n}(\cos \theta)$ is a solution of $\nabla^{2} V=0$ in spherical polar co-ordinates.
Therefore $\frac{1}{r^{2}} \frac{\partial}{\partial r}\left\{r^{2} \frac{\partial}{\partial r} r^{n} P_{n}(\cos \theta)\right\}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} r^{n} P_{n}(\cos \theta)=0$
Therefore $n(n+1) r^{n-2} P_{n}(\mu)+r^{n+2} \frac{d}{d \mu}\left(1-\mu^{2}\right) \frac{d}{d \mu} P_{n} \mu=0$
Therefore $P_{n}(\mu)$ satisfies $\frac{d}{d \mu}\left(1-\mu^{2}\right) \frac{d w}{d \mu}+n(n+1) w=0$
[N.B. This equation has solutions linearly independent of $P_{n}(\mu)$ since it is of the second order. These solutions are unbounded at $\mu \pm 1$ corresponding to $\theta=0$ or π (i.e. the 2-axis).
5) Orthogonal Property

> i) $\frac{d}{d \mu}\left(1-\mu^{2}\right) \frac{d}{d \mu} P_{n}(\mu)+n(n+1) P_{n}(\mu)=0$
> ii) $\frac{d}{d \mu}\left(1-\mu^{2}\right) \frac{d}{d \mu} P_{m}(\mu)+m(m+1) P_{m}(\mu)=0$
> (i) $P_{m}(\mu)-(i i) P_{n}(\mu)$ gives
> $\frac{d}{d \mu}\left(1-\mu^{2}\right)\left\{P_{m} \frac{d}{d \mu} P_{n}-P_{n} \frac{d}{d \mu} P_{m}\right\}+[n(n+1)-m(m+1)] P_{m} P_{n}=0$
> So $(n-m)(n+m+1) \int_{-1}^{1} P_{m} P_{n} d \mu+\left[\left(1-\mu^{2}\right)\left(P_{m} P_{n}^{\prime}-P_{n} P_{m}^{\prime}\right)\right]_{-1}^{1}=0$
> Therefore $\int_{-1}^{1} P_{m} P_{n} d \mu=0 \quad m \neq n$

Value of $\int_{-1}^{1} P_{n}^{2}(\mu) d \mu$
$\frac{1}{\left(1-2 \mu h+h^{2}\right)}=\left[\sum_{0}^{\infty} h^{n} P_{n}(\mu)\right]^{2}$
$\int_{-1}^{1} \frac{d \mu}{1-2 \mu h+h^{2}}=\int_{-1}^{1}\left[\sum_{0}^{\infty} h^{n} P_{n}(\mu)\right]^{2} d \mu$

$$
\begin{aligned}
\text { LHS } & =\left[-\frac{1}{2 h} \log \left(1-2 \mu h+h^{2}\right)\right]_{-1}^{1}=\frac{1}{2 h} \log \frac{(1+h)^{2}}{(1-h)^{2}} \\
& =\frac{1}{h} \log \frac{1+h}{1-h}=2 \sum_{0}^{\infty} \frac{h^{2 n}}{2 n+1} \\
\text { RHS } & =\int_{-1}^{1} \sum_{n=0}^{\infty} h^{n} P_{n}(\mu) \sum_{m=0}^{\infty} h^{m} P_{m}(\mu) d \mu \\
& =\sum_{n=0}^{\infty} h^{n} \int_{-1}^{1} P_{n}(\mu) \sum_{m=0}^{\infty} h^{m} P_{m}(\mu) d \mu \\
& =\sum_{n=0}^{\infty} h^{n} \sum_{m=0}^{\infty} h^{m} \int_{-1}^{1} P_{n}(\mu) P_{m}(\mu) d \mu \\
& =\sum_{n=0}^{\infty} h^{2 n} \int_{-1}^{1} P_{n}^{2}(\mu) d \mu \quad \text { therefore } \int_{-1}^{1} P_{n}^{2}(\mu) d \mu=\frac{2}{2 n+1}
\end{aligned}
$$

6) Rodriguez's Formula
P_{m} is perpendicular to $P_{n}, m \neq n, \quad P_{n}(1)=1, \quad P_{n}(\mu)$ is of degree n. Define $F(\mu)$ of degree $2 n$ such that $F^{(n)}(\mu)=P_{n}(\mu)$
$F(1)=F^{\prime}(1)=\cdots=F^{\prime}(n-1)=0$.
In fact $F(\mu)=\frac{1}{(n-1)!} \int_{1}^{\mu}(\mu-\lambda)^{n-1} P_{n}(\lambda) d \lambda$
i) $F(\mu)$ has a zero of order n at $\mu=+1$
ii) We show from the orthogonal properties that $F(\mu)$ has a zero of order n at $\mu=-1$.

Assuming this we have
$F(\mu)=(\mu-1)^{n}(\mu+1)^{n} *$ poly. of degree 0
$=c(\mu-1)^{n}(\mu+1)^{n}=c\left(\mu^{2}-1\right)^{n}$
Therefore $P_{n}(\mu)=c \frac{d^{n}}{d \mu^{n}}\left(\mu^{2}-1\right)^{n}$
To find c let $\mu=1$
$1=c\left[\frac{d^{n}}{d \mu^{n}}(\mu-1)^{n}(\mu+1)^{n}\right]_{\mu=1}=c n!2^{n}$
Therefore $c=\frac{1}{n!2^{n}}$ using Leibniz theorem.

Proof of (ii)
Since $P_{0}, P_{1} \ldots$ are linearly independent polynomials, any polynomial $f(\mu)$ of degree r can be expressed uniquely as $c_{0} P_{0}+c_{1} P_{1}+\cdots+c_{r} P_{r}$. P_{n} is perpendicular to $P_{r}, r<n$, therefore P_{n} is perpendicular to any polynomial of degree $r<n$. In particular P_{n} is perpendicular to $(1+\mu)^{r}, \quad r<n$.
i.e. $\int_{-1}^{1} P_{n}(\mu)(1+\mu)^{r} d \mu=0, \quad r<n$
i.e. $\int_{-1}^{1} F^{(n)}(\mu)(1+\mu)^{r} d \mu=0, \quad r<n$

Denote this by $I_{n, r}$, where $I_{n, r}=0$ for $0<r<n$
$I_{n, r}=-r \int_{-1}^{1} F^{(n-1)}(\mu)(1+\mu)^{r-1} d \mu$
Therefore $I_{n-1, r-1}=0$ for $1<r<n$
By r integrations by parts $\int_{-1}^{1} F^{(n-r)}(\mu) d \mu=0$
$\left[F^{(n-r-1)}(\mu)\right]_{-1}^{1}=0 \quad F^{(n-r-1)}(1)=F^{(n-r-1)}(-1)=0 \quad r=0,1, \cdots n-1$
Hence (ii) follows.

Suppose $f(\mu)$ has derivatives of all orders in $[-1,1]$.

$$
\begin{aligned}
& \int_{-1}^{1} f(\mu) P_{n}(\mu) d \mu=\frac{1}{2^{n} n!} \int_{-1}^{1} f(\mu) D^{n}(\mu-1)^{n} d \mu \\
& \quad=\frac{1}{2^{n} n!} \int_{-1}^{1}\left[-f^{\prime}(\mu)\right] D^{n-1}\left(\mu^{2}-1\right)^{n} d \mu+0 \\
& \quad=\frac{(-1)^{n}}{2^{n} n!} \int_{-1}^{1} f^{(n)}(\mu)\left(\mu^{2}-1\right) d \mu=\frac{1}{2^{n} n!} \int_{-1}^{1}\left(1-\mu^{2}\right)^{n} f^{(n)}(\mu) d \mu \\
& \text { e.g. } \int_{-1}^{1} P_{n}^{2}(\mu)=\frac{1}{2^{n} n!} \int_{-1}^{1}\left(1-\mu^{2}\right)^{n} D^{n} P_{n}(\mu) d \mu=\frac{2}{2 n+1}
\end{aligned}
$$

7) Recurrence Formulae

We have $G(\mu, h) \equiv\left(1-2 \mu h+h^{2}\right)^{-\frac{1}{2}}=\sum_{0}^{\infty} h^{n} P_{n}(\mu)$
(a) $\frac{\partial G}{\partial h}=\frac{\mu-h}{\left(1-2 \mu h+h^{2}\right)} G$
i.e. $\left(1-2 \mu h+h^{2}\right) \sum_{1}^{\infty} n P_{n}(\mu) h^{n-1}=(\mu-h) \sum_{0}^{\infty} h^{n} P_{n}(\mu)$

Equating coefficients of h^{n} on each side

$$
\begin{align*}
& (n+1) P_{n+1}(\mu)-2 \mu n P_{n}(\mu)+(n-1) P_{n-1}(\mu)=\mu P_{n}(\mu)-P_{n-1}(\mu) \tag{i}\\
& 2 P_{2}(\mu)-2 \mu P_{1}(\mu)=\mu P_{1}(\mu)-P_{0}(\mu) \tag{ii}\\
& P_{1}(\mu)=\mu P_{0}(\mu) \tag{iii}
\end{align*}
$$

(i) gives $(m+1) P_{m+1}(\mu)-(2 n+1) \mu P_{n}(\mu)+n P_{n-1}(\mu)=0$
(b) $\frac{\partial g}{\partial \mu}=\frac{h}{\left(1-2 \mu h+h^{2}\right)} G \quad \frac{\partial G}{\partial h}=\frac{\mu-h}{\left(1-2 \mu h+h^{2}\right)} G$
$\left(\frac{1}{h}-h\right) \frac{\partial G}{\partial \mu}-2 h \frac{\partial G}{\partial h}=\frac{1-h^{2}-2 h(\mu-h)}{\left(1-2 \mu h+h^{2}\right)} G=G$
Therefore $\left(\frac{1}{h}-h\right) \frac{\partial G}{\partial \mu}=\left(2 h \frac{\partial}{\partial h}+1\right) G$
$\left(\frac{1}{h}-h\right) \sum_{1}^{\infty} h^{n} P_{n}^{\prime}(\mu)=\sum_{0}^{\infty}(2 n+1) h^{n} P_{n}(\mu)$
therefore $P_{n+1}^{\prime}(\mu)-P_{n-1}^{\prime}(\mu)=(2 n+1) P_{n}(\mu)$
$P_{2}^{\prime}(\mu)=3 P_{1}(\mu)$
This formula gives
$\int_{1}^{\mu} P_{n}(\lambda) d \lambda=\frac{1}{2 n+1}\left\{P_{n}+1(\mu)-P_{n-1}(\mu)\right\}$
(c) $\frac{\mu^{2}-1}{h} \frac{\partial G}{\partial \mu}-(\mu-h) \frac{\partial G}{\partial h}=-G$

Therefore $\left(\mu^{2}-1\right) P_{n}^{\prime}(\mu)=n\left(\mu P_{n}(\mu)-P_{n-1}(\mu)\right)$

$$
\begin{aligned}
& =n\left\{\frac{(n+1) P_{n+1}(\mu)+n P_{n-1}(\mu)}{2 n+1}-P_{n-1}(\mu)\right\} \\
& =\frac{n(n+1)}{2 n+1}\left\{P_{n+1}(\mu)-P_{n-1}(\mu)\right\}
\end{aligned}
$$

Differentiating the above gives
$\frac{d}{d \mu}\left(\mu^{2}-1\right) \frac{d P_{n}(\mu)}{d \mu}=\frac{n(n+1)}{2 n+1}\left\{P_{n+1}^{\prime}(\mu)-P_{n-1}^{\prime}(\mu)\right\}=n(n+1) P_{n}(\mu)$
which is Legendre's equation.
[Note that $\frac{\partial}{\partial \mu}\left(\mu^{2}-1\right) \frac{\partial G}{\partial \mu}=h \frac{\partial}{\partial h}\left(h \frac{\partial}{\partial h}+1\right) G$ and this leads to the differential equation.]

Zeros of $P_{n}(\mu)$
$P_{n}(\mu)=\frac{1}{2^{n} n!} \frac{d^{n}}{d \mu^{n}}\left(\mu^{2}-1\right)^{n}$
$\left(\mu^{2}-1\right)^{n}$ has n zeros at -1 and n zeros at +1 .
therfore $\frac{d}{d \mu}\left(\mu^{2}-1\right)^{n}$ has $n-1$ zeros at $-1, n-1$ zeros at +1 and therefore one (say μ) in $(-1,1)$, as it has $2 n-1$ altogether.
Continuing this process $\frac{d^{n}}{d \mu^{n}}\left(\mu^{2}-1\right)^{n}$ has n zeros in $-1<\mu<1$, all simple.

Axially Symmetric Potentials (in spherical co-ordinates)

DIAGRAM

Let U be a solution of $\nabla^{2} U=0$, existing in $a \leq r \leq b$ and axially symmetric about $O z$.
If (r, θ, ϕ) are spherical polar co-ordinates, where $\theta=0$ and $\theta=\pi$ is the same z-axis, then U has the form $\sum_{0}^{\infty}\left(A_{n} r^{n}+\frac{B_{n}}{r^{n+1}}\right) P_{n}(\cos \theta)$
on $\theta=0$ this becomes $U(r, 0)=\sum_{0}^{\infty}\left(A_{n} r^{n}+\frac{B_{n}}{r^{n+1}}\right)$.
Conversely if $U(r, 0)$ has this form and exists in $a \leq r \leq b$ then
$U(r, \theta)=\sum_{0}^{\infty}\left(A_{n} r^{n}+\frac{B_{n}}{r^{n+1}}\right) P_{n}(\cos \theta)$
Example
DIAGRAM
$U=\int \frac{d S}{\left|\vec{r}-\overrightarrow{r_{0}}\right|}$
where \vec{r} is the position vector of the field point, and where $\overrightarrow{r_{0}}$ is the position vector of a point on the disc, and the integral is taken over the disc with boundary $r=C, \theta=\alpha$, referred to $O z$.

$$
\begin{aligned}
& \text { DIAGRAM } \\
& U(r, 0)=2 \pi \int_{)}^{a} \frac{p d p}{\left(p^{2}+h^{2}\right)^{\frac{1}{2}}}=2 \pi\left[\sqrt{a^{2}+h^{2}}-|h|\right]=2 \pi(R-h)
\end{aligned}
$$

$h=c \cos \alpha-r$
Therefore $U(r, 0)=2 \pi\left[\left(r^{2}+c^{2}-2 r c \cos \alpha\right)^{\frac{1}{2}}-(c \cos \alpha-r)\right]$

$$
\begin{aligned}
& \left(r^{2}+c^{2}-2 r c \cos \alpha\right)^{\frac{1}{2}}=\left(r^{2}+c^{2}-2 r c \cos \alpha\right)\left(r^{2}+c^{2}-2 r c \cos \alpha\right)^{\frac{1}{2}} \\
& \quad=\left(r^{2}+c^{2}-2 r c \cos \alpha\right)\left\{\begin{array}{l}
\sum_{n=0}^{\infty} \frac{c^{n}}{r^{n+1}} P_{n}(\cos \alpha) \\
\sum_{n=0}^{\infty} \frac{r^{n}}{c^{n+1}} P_{n}(\cos \alpha) \\
r>c
\end{array}\right.
\end{aligned}
$$

For $r>c$, putting $\lambda=\cos \alpha$,

$$
\begin{aligned}
& \frac{\left(r^{2}+c^{2}-2 r c \cos \alpha\right)^{\frac{1}{2}}}{r}=\left(1+\frac{c^{2}}{r^{2}}-2 \lambda \frac{e}{r}\right) \sum_{0}^{\infty}\left(\frac{c}{r}\right)^{n} P_{n}(\lambda) \\
& \quad=P_{0}(\lambda)+\frac{c}{r}\left\{P_{1}(\lambda)-2 \lambda P_{0}(\lambda)\right\}+\sum_{r=2}^{\infty}\left(\frac{c}{r}\right)^{n}\left\{P_{n}(\lambda)-2 \lambda P_{n-1}(\lambda)+P_{n-2}(\lambda)\right\}
\end{aligned}
$$

Therefore $\left(r^{2}+c^{2}-2 r c \cos \alpha\right)^{\frac{1}{2}}-(r-c \lambda)$

$$
\begin{aligned}
& \quad=r\left(1+\frac{c}{R}(-\lambda)+\sum_{n=2}^{\infty}\left\{P_{n}(\lambda)-2 \lambda P_{n-1}(\lambda)+P_{n-2}(\lambda)\right\}\right)-(r-c \lambda) \\
& \quad=r \sum_{n=2}^{\infty} \frac{c^{n}}{r^{n}} F_{n}(\lambda), \quad F_{n}(\lambda)=P_{n}(\lambda)-2 \lambda P_{n-1}(\lambda)+P_{n-2}(\lambda) \\
& \text { Therefore } \frac{U(r, 0)}{2 \pi}=\sum_{n=2}^{\infty} \frac{c^{n}}{r^{n-1}} F_{n}(\lambda)=\sum_{n=0}^{\infty} \frac{c^{n+2}}{r^{n+1}} F_{n+2}(\lambda) \quad r>c
\end{aligned}
$$

Therefore $\frac{U(r, 0)}{2 \pi}=\sum_{n=0}^{\infty} \frac{c^{n+2}}{r^{n+1}} P_{n}(\cos \theta) F_{n+2}(\cos \alpha)$
[For large $r, \mathrm{RHS} \approx \frac{c^{2}}{r} F_{2}(\cos \alpha)$
$F_{2}(\cos \alpha)=P_{2}(\cos \alpha)-2 \cos \alpha P_{1}(\cos \alpha)+P_{0}(\cos \alpha)$

$$
=\frac{3 \cos ^{2} \alpha-1}{2}-2 \cos ^{2} \alpha+1=\frac{1}{2}-\frac{1}{2} \cos ^{2} \alpha=\frac{1}{2} \sin ^{2} \alpha
$$

Therefore $U(r, \theta) \sim \frac{\pi c^{2} \sin ^{2} \alpha}{r}=\frac{\pi a^{2}}{r}$ as $r \rightarrow \infty$]

$$
\begin{aligned}
F_{n+2}(\lambda) & =P_{n+2}-2 \lambda P_{n+1}+P_{n} r \\
& =P_{n+2}+P_{n}-2\left\{\frac{(n+2) P_{n+2}+(n+1) P_{n}}{2 n+3}\right\} \\
& =\frac{-P_{n+2}+P_{n}}{2 n+3}=\frac{\left(1-\lambda^{2}\right) P_{n+1}^{\prime}(\lambda)}{(n+1)(n+2)}
\end{aligned}
$$

Example of Boundary Problem

To find a potential V existing in $0 \leq r \leq a$ such that $V+U=0$ on $r=a$ where $U(r, \theta)$ is the potential considered above.
$V(r, \theta)$ must be of the form $\sum_{n=0}^{\infty} \frac{r^{n}}{a^{n}} A_{n} P_{n}(\cos \theta)$
Hence we require $\sum_{0}^{\infty} A_{n} P_{n}(\cos \theta)+U(a, \theta)=0$
$\frac{U(a, \theta)}{2 \pi}=\sum_{n=0}^{\infty} \frac{c^{n+2}}{a^{n+1}} P_{n}(\cos \theta) F_{n+2}(\lambda)$
Therefore $\frac{V}{2 \pi}=-\sum_{0}^{\infty} r^{n} \frac{c^{n+2}}{a^{2 n+1}} P_{n}(\cos \theta) F_{n+2}(\lambda)$.

Definition - Solid Harmonic of degree \mathbf{n}

If $f(x, y, z)$ is a polynomial in x, y, z homogeneous and of degree n, and if $\nabla^{2} f=0$, then f is said to be a solid harmonic of degree n.
Example: $1 ; x, y, z ; y z, z x, x y, z^{2}-x^{2}, z^{2}-y^{2}$, etc.

Definition - Surface Harmonic of degree \mathbf{n}

If $f(x, y, z)=r^{n} S_{n}(\mathbf{u})$ or $r^{n} S_{n}(\theta, \phi)$ where S_{n} depends only on the unit vector \mathbf{u} along the position vector, or on the spherical polar angles θ, ϕ, S_{n} is called a surface harmonic of degree n.

Differential Equation satisfied by $\mathbf{S}_{\mathbf{n}}$

Substitute $f=r^{n} S_{n}$ in $\nabla^{2} f=0$.
$\left\{\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{d}{d \theta}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right\} f=0$
Therefore $\left\{\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{d}{d \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}+n(n+1)\right\} S_{n}=0$
This equation admits solutions of the form $s(\theta) e^{ \pm i m \phi}, m$ constant, where
$\frac{1}{\sin \theta} \frac{d}{d \theta} \sin \theta \frac{d s}{d \theta}+\left(n(n+1)-\frac{m^{2}}{\sin ^{2} \theta}\right) s=0$
Putting $\cos \theta=\mu$, so $\frac{1}{\sin \theta} \frac{d}{d \theta}=-\frac{d}{d \mu}$ this becomes
$\frac{d}{d \mu}\left(1-\mu^{2}\right) \frac{d s}{d \mu}+\left(n(n-1)-\frac{m^{2}}{1-\mu^{2}}\right) s=0$
Equation (2) is called Legendre's associated equation. For $m=0$ it reduces to Legendre's equation. In this case S_{n} is independent of ϕ, i.e. is axially
symmetric. One solution is $P_{n}(\mu)$.

The number of linearly independent Surface Harmonics of degree n is $2 n+1$

f can always be written
$f=\phi_{n}(x, y)+\frac{z}{1!} \phi_{n-1}(x, y)+\frac{z^{2}}{2!} \phi_{n-2}(x, y)+\cdots$
where ϕ_{r} is a homogeneous polynomial in x, y of degree r.

$$
\begin{aligned}
\nabla^{2} f=\nabla_{1}^{2} & +\frac{\partial^{2}}{\partial z^{2}}=\left(\nabla_{1}^{2} \phi_{n}+\phi_{n-2}\right)+\frac{z}{1!}\left(\nabla_{1}^{2} \phi_{n-1}+\phi_{n-3}\right) \\
& +\cdots+\frac{z^{n-3}}{(n-3)!}\left(\nabla_{1}^{2} \phi_{3}+\phi_{1}\right)+\frac{z^{n-2}}{(n-2)!}\left(\nabla_{1}^{2} \phi_{2}+\phi_{0}\right)
\end{aligned}
$$

Since this must vanish identically

$$
\begin{array}{lr}
\nabla_{1}^{2} \phi_{n}+\phi_{n-2}=0 & \nabla_{1}^{2} \phi_{n-1}+\phi_{n-3}=0 \\
\nabla_{1}^{2} \phi_{n-2}+\phi_{n-4}=0 \ldots & \nabla_{1}^{2} \phi_{n-3}+\phi_{n-5}=0 \ldots
\end{array}
$$

Therefore ϕ_{n}, ϕ_{n-1} are arbitrary polynomials in x, y of degrees n and $n-1$, and for the others we have
$\phi_{n-2 r}=(-1)^{r}\left(\nabla_{1}^{2}\right)^{r} \phi_{n}$
$\phi_{n-2 r-1}=(-1)^{r}\left(\nabla_{1}^{2}\right)^{r} \phi_{n-1}$
Therefore
$f=\phi_{n}-\frac{z^{2}}{2!} \nabla_{1}^{2} \phi_{n}+\frac{z^{4}}{4!}\left(\nabla_{1}^{2}\right)^{2} \phi_{n}-\cdots+\frac{z}{1!} \phi_{n-1}-\frac{z^{3}}{3!}\left(\nabla_{1}^{2}\right) \phi_{n-1}+\frac{z^{5}}{5!}\left(\nabla_{1}^{2}\right)^{2} \phi_{n-1}-\cdots$
where both series must terminate.
ϕ_{n} can have any one of the forms $x^{n}, x^{n-1} y, \cdots y^{n}$. There are $n+1$ of these, and they are linearly independent.
ϕ_{n-1} can have any one of the forms $x^{n-1}, x^{n-2} y, \cdots y^{n-1}$. There are n of these, and they are linearly independent.
Therefore the total number of forms is $2 n+1$ and the corresponding f 's are linearly independent.

Associated Legendre Functions [Ferrer's definition]

$P_{n}^{m}(\mu)=\left(1-\mu^{2}\right)^{\frac{m}{2}} \frac{d^{m}}{d \mu^{m}} P_{n}(\mu)=\left(1-\mu^{2}\right)^{\frac{m}{2}} \frac{1}{2^{n} n!} \frac{d^{m+n}}{d \mu^{m+n}}\left(\mu^{2}-1\right)^{n}$
is the associated Legendre function of the first kind of degree n, order m. There are $n+1$ such functions for $m=0,1,2 \cdots n$.
We show
i) $r^{n} e^{ \pm m i \phi} P_{n}^{m}(\cos \theta)=$ polynomial in x, y, z of degree n.
ii) $\nabla^{2} r^{n} e^{ \pm m i \phi} P_{n}^{m}(\cos \theta)=0$
i) $P_{n}^{m}(\cos \theta)=\sin ^{m} \theta$ [Poly. in $\cos \theta ; \cos ^{n-m} \theta \ldots\left\{\begin{array}{cl}\cos \theta & n-m \text { odd } \\ 1 & n-m \text { even }\end{array}\right.$ $r^{n} e^{i m \phi} P_{n}^{m} \cos \theta=(r \sin \theta)^{m} e^{i m \phi} r^{n-m}[\cdots]$
$=(x+i y)^{m}\left[\right.$ Poly in $z, r^{2} ; z^{n-m}, z^{n-m-2} r^{2} \cdots\left\{\begin{array}{cc}z r^{n-m-1} & n-m \text { odd } \\ r^{n-m} & n-m \text { even }\end{array}\right.$ $=$ poly in $x, y, z, \sin \theta, r^{2}=x^{2}+y^{2}+z^{2}$
ii) To show $\nabla^{2} r^{n} e^{ \pm i m \phi}\left(1-\mu^{2}\right)^{\frac{m}{2}} \frac{d^{m}}{d \mu^{m}} P_{n}(\mu)=0$

This is so if $e^{ \pm i m \phi}\left(1-\mu^{2}\right)^{\frac{m}{2}} \frac{d^{m}}{d \mu^{m}} P_{n}(\mu)$
satisfies $\left[\frac{\partial}{\partial \mu}\left(1-\mu^{2}\right) \frac{\partial}{\partial \mu}+\left(n(n+1)+\frac{1}{1-\mu^{2}}\right) \frac{a p^{2}}{\partial \phi^{2}}\right]()=0$
i.e. if $\left(1-\mu^{2}\right)^{\frac{m}{2}} D^{m} P_{n}(\mu)$ satisfies
$L(m ; w)=\left[\frac{d}{d \mu}\left(1-\mu^{2}\right) \frac{d}{d \mu}+n(n+1)-\frac{m^{2}}{1-\mu^{2}}\right] w=0$
This is know as Legendre's Associated equation.
Now

$$
\begin{aligned}
& L\left(m:\left(1-\mu^{2}\right)^{\frac{m}{2}} W\right)=\frac{d}{d \mu}\left\{\left(1-\mu^{2}\right)^{\frac{m}{2}+1} \frac{d W}{d \mu}-m \mu\left(1-\mu^{2}\right)^{\frac{m}{2}} W\right\} \\
& \quad+\left\{n(n+1)-\frac{m^{2}}{1-\mu^{2}}\right\}\left(1-\mu^{2}\right)^{\frac{m}{2}} W \\
& =\left(1-\mu^{2}\right)^{\frac{m}{2}+1} \frac{d^{2} W}{d \mu^{2}}+(-\mu(m+2)-m \mu)\left(1-\mu^{2}\right)^{\frac{m}{2}} \frac{d W}{d \mu} \\
& -m W\left(\left(1-\mu^{2}\right)^{\frac{m}{2}}-m \mu^{2}\left(1-\mu^{2}\right)^{\frac{m}{2}-1}\right) \\
& \quad+\left\{n(n+1)-\frac{m^{2}}{1-\mu^{2}}\right\}\left(1-\mu^{2}\right)^{\frac{m}{2}} W \\
& =\left(1-\mu^{2}\right)^{\frac{m}{2}} L_{1}(m: W)
\end{aligned}
$$

where $L_{1}(m: W)$

$$
=\left\{\left.\left(1-\mu^{2}\right) \frac{d^{2}}{d \mu^{2}}-2(m+1) \right\rvert\, m u \frac{d}{d \mu}+n(n+1)-m(m+1)\right\} W
$$

We must now show that
$L_{1}\left(m: D^{m} P_{n}(\mu)\right)=0$
Since $L_{1}(m ; W)=0 \Rightarrow D L_{1}(m: W)=0$ we get
$\left[\left(1-\mu^{2}\right) D^{3}+\left(-2 \mu D^{2}-2(m+1) \mu D^{2}\right)\right.$
$+n(n+1)-m(m+1)-2(m+1) D] W=0$
i.e. $\left[\left(1-\mu^{2}\right) D^{2}-2 \mu(m+2) D+n(n+1)-(m+1)(m+2)\right] D W=0$
i.e. $L_{1}(m+1 ; D W)=0$
i.e. $L_{1}(m ; W)=0 \Rightarrow L_{1}(m+1 ; D W)=0$
i.e. $L_{1}(0, W)=0 \Rightarrow L_{1}\left(m ; D^{m} W\right)=0$
$L_{1}\left(0 ; P_{n}(\mu)\right)=\left[\left(1-\mu^{2}\right) D^{2}-2 \mu D+n(n+1)\right] P_{n}(\mu)=0$
Therefore $L_{1}\left(m ; D^{m} P_{n}(\mu)\right)=0$ as required.

General Surface Harmonic of degree \mathbf{n}

Giving m the values $0,1, \cdots n$ in $r^{n} e^{ \pm m i \phi} P_{n}^{m}(\cos \theta)$ we have $r^{n} P_{n}(\cos \theta), r^{n} e^{ \pm i \phi} P_{n}^{\prime}(\cos \theta), \cdots r^{n} e^{ \pm n i \phi} P_{n}^{n}(\cos \theta)$.
These are $2 n+1$ in number and are linearly independent (from the orthogonality of $1, e^{ \pm i \phi} \cdots$ over $\left.0 \leq \phi \leq 2 \pi\right)$.
Therefore

$$
\begin{aligned}
S_{n} & =A_{0} P_{n}(\mu)+\sum_{m=1}^{n}\left(C_{m} e^{m i \phi}+C_{m}^{\prime} e^{-m i \phi}\right) P_{n}^{m}(\mu) \\
& =A_{0} P_{n}(\mu)+\sum_{m=1}^{n}\left(A_{m} \cos m \phi+B_{m} \sin m \phi\right) P_{n}^{m}(\mu)
\end{aligned}
$$

Solutions of Legendre's equation when $\mathbf{n} \neq$ integer

