The Gamma Function

I. Integral Definition

I'(z) = /Oo t*~le tdt

This is (?onvergent since t™e~t < ™ "n! thus proving convergence at the
upper limit and also at the lower limit if z > 0 since lim [ ¢*~'dt exists.

e—0 J¢

For z complex the convergence holds for R(z) > 0.
We have

) (1) :/OOO e~tdt = 1

i) 20(2) = T(z + 1)

) 7 ) 00 }7
/ e tdt = [—e_t] +/ —e tdt
0 Z 0 0 z
1
['z)=0+-T(z+1)
z

iii) M(n+1) =n! (n >0, an integer)

I1. Alternative Integral Definition
Substitute ¢ = u?, this gives I'(z) = 2/ u? e du
0

ITI. Limit Definition (Euler)
nln®

n—= z(z 4 1)+ (2 +n)
This holds for all z except 0, —1, -2, ---
We can derive III from I in two ways

a) e ' = lim <1 - E)

n—00 n

n t\"
Define T',,(2) = / =1 <1 — —) dt
0 n
n n t\"
/ tlemtdt —T(2) = / =t {et — (1 — —) }dt
0 0 n
/ntz_le_t {1 —é (1 — E) }dt
0 n



We have

) et >t+1 for all ¢
i) et >1—1t for all ¢

From ii) 1 > e’(1 —¢) for all ¢

From i) multiplying by (1 —¢), ¢t <1
ef(1—1t)> (1 -1t

Therefore 1 > e'(1 —t) >1—t*> fort <1
Taking the nth power (0 <t <1)
1>e™1—t)">(1—t3)"

Replace t by ©

t\" 2\"
12&(1——) >(1-— 0<t<n
n n

t2 n . AN
Hence 1 — 1——2 21—6(1——) >0
n n

For0 <z <1 0<1—2"<n(l-2x)

t2 . t n
Therefore — > 1 —e¢ (1 — ) >0
n n

/t21_t<1—e<1—t>>dt‘
n
< [MEten et(1—3) dt

n

< / e
0 n

Therefore

|tzfl| — e(:Efl)logt =1 = tRe(z)fl

/ et (1 — ¢ (1 — —) )dt‘ < —/ e+t gy
0 n nJo

/ PRe(z1) gt gy ['(Re(z+2)) const

t n
Hence hm/tZl_t( t(l——))dt:O
n—00 n

Therefore




n—oo

Hence lim { [t - Fn(z)} _ 0
0
Therefore I'(z) = lim I',,(2)

n—oo

n t n
T,(z) — /OtH (1—5) dt
1
= nz/ 11 — s)"ds
0

.nn—1 1
= n°— 1
zz+1 z+n

nln?

Therefore I'(z) = i
erefore I'(2) 6o 2(z + 1) (2 + 1)

1-Hme==t 0<t<n
b) Define f,(t) = { ( ’6) £ >

then 0 < |f,.(¢)| < |e7'*7 Y for every n, and f,(t) — e '*" 1 asn — oo

for every t, also EI/ e 't ldt < o0
0

Hence by Lebesgue’s theorem on dominated cgce.

|t ) = Jim [

n—oo — 0
i.e./ e ' dt = lim/ fa(t)dt
0 n—00 Jo

and the result follows as before.

IV. Infinite Product Definition (Weierstrass)

Infinite Products

We have a sequence 1+ ay, 1 + as, --- none of which are zero. We form the
product defined by

[T.=0+a)(l4+as) - (1+ay)

If [1,,, tends to a limit other than zero as m — oo then the infinite product
o0

(1+a1)(1+ a)--- is said to converge and is written [](1+ a,).

n=1



I,
anl

A necessary condition for convergence is limn — ooa,, = 0, for 1+a,, =

and we have limn — oo [ = lim IT #0
n n—1

(e 9]
A sufficient condition for convergence is that the series » log(1l + a,) is

n=1
convergent.

(Here we take the principal value of the log.
i.e. such that —m < arg(l + a,) < 7 and log(1 + a,,) — 0 as n — oo and
a, — 0.)

for [ = exp {log ﬁ(l + an)}
= exp {i log(1 + an)}

Hence, since the exponential function is continuous, limexp s,, = explim s,,,

and the result follows when we take s, = > log(1 + a,).

n=1
If 3" log(14a,) is absolutely convergent then [[(14a,,) is said to be absolutely
convergent.

Theorem

A necessary and sufficient condition for absolute convergence is that the series
3" a, is absolutely convergent.

Proof

Since lim a, = 0 we can find m where |a,| < 1 for n>m.

Then

a?  ad
log(l+a,) = a,— 2 +4-n_
og(1l+ ay) a 2+3

log(l+an) | _ _aw_ @y
an, 2 3
log(1 + ay,) lan]  |an|?
_ 1l < Gnl ..
an, - 2 + 3 +
1 1 1
< 54—2—3—1—?4— nz=m
1
< _
- 2



1 log(1 n 3
Therefore = < log(1 + an) <2
2 an, 2
1 3
Therefore §|an| < |log(1+ a,)| < §|an| n>m

Hence by the comparison test Y |log(1+ a,)| converges or diverges as Y- |ay|
converges or diverges.

N.B. If a finite number of factors (1 + a;),--- vanish and if the product
omitting these factors is convergent the product is said to converge to zero.
If no factor vanishes but n%l—{noo H = 0 then the product is said to diverge to

Zero.

Returning to the Gamma-Function we have:

L _ Z(1+5>(1+5) (1+5>
F(z)_nl—{gozn 1 2 n

The product [ (1 + E) is divergent (z # 0) for
n

2
10g<1+Z):Z+o(:> {'zul}
n n n n

and the series 3° % is divergent and Y- O(-5) is convergent.
Hence Y- log(1 + a,) is divergent (z # 0).

Now [T (14 2) = [T { (14 2) i ectiie

n n=1

B 2
Also log (1 + E) en =0 <Z—2>
n n

z

s z
Hence the product H (1 + —) e~ n is convergent.
n

n=1
1 m 2
Therefore W = zﬂli_r)noO m’zez(1+%+"'+%) 711;[1 (1 + %) e n

m—0o0

1 1 m z
=z lim ez(1+§+"'+;—logm) H <1 + —) e n
n

n=1
1 1
Now lim (1 + 3 + 4 — = logm) =~  (Euler’s constant)
m—00 m
1 S 2
Therefore —— = ze”* [] (1 + E) e n

F(’Z) n=1 n
This is Weierstrass’ definition.



Euler’s Constant - Proof that v ¢ exists

s n+1

1 1
1+§+ +——log(m+1 Z——Zlog
nl

= Z u,, where u,, = 711 log”—Jr1

/ /ot+n_/ (_t+n>dt
A‘G:a—ﬂfﬁﬁ e

Therefore Y u,, is convergent by comparison with > 212

1 1
Therefore lim [1 + 2 + - + — —log(m + 1) } Z Up

m—0o0

1 1 1 1 1
Now 14+ —-+---+ — —logm = [1+---—log(m+1)] —I—logm+
2 m 2 m .
and nlbimoo log = log1 = 0. Therefore v = Zun
n=1

Properties of I'(z) (Weierstrass Form)

i) The RHS is convergent for all z < co. Hence I'(z) has no zeros.

ii) The RHS has simple zeros at z = 0,—1,---. Hence I'(z) has simple
poles at these points.

iii) 2T'(2) =T(2+1)

iv) T(2)I(1 — 2) = meseme sz_n< 2»

n2m2

v) 227 10(2)(z + %) = F(%)F(Qz) duplication formula

(NI

vi) I(5) =m (same as iv) but with z = %)

N[ =

Behaviour of I'(z) for real z
['(z) >0 for x >0 I'(n)=(n—-1)!
2z+1)---(z4+4n)l(z)=T(n+1+2)

Therefore (z +n)I'(z) = 22 +F1()n+ (12++Z7)L +1)




I _ =

—n(-n+1)---(=1)  nl
This is the residue at the simple pole z = —n.
DIAGRAM

lim (= +0)T'(:) =

The Beta FllJ.nction
B(m, n) = / um*1(1 _ u)n—ldu (m’ N> 0)
0
I'(m)l
We shall show that B(m,n) = M
L'(m+n)
We note that B(m,n) = B(n,m) (putting u = 1 — v).
Also putting u = cos? 0

B(m,n) =2 /5 cos®™ ! fsin®" 1 0df
0

2

R

Define I'(m; R) = 2/ 2" e dy
0

then I%im I'(m; R) = T'(m)

R 2m—1_—z? R 2n—1_—y>
I'(m; R)I'(n; R) = 4/0 " e da:/o y e Y dy
Assume for the moment that m,n > % Then 2™ te=*"y2n~1e=¥" i a con-
tinuous function of z and y in x > 0, y > 0.

Hence 4 / / x2m’1e’x2y2“”1e’y2d:€dy =4 /R 22" e dy /R yZ"’le’dey
square 0 0
0<z<R
0<y<R

DIAGRAM

RISl
square quadrant

0<0<Z
0<r<R

4//—4//2m12”1 ™ rdrdd

quadrant

=14 / p2mt2n=l,—r? . / cos?™ 1 9 sin® 1 do
0 0
=I'(m +n; R)B(m,n)



Therefore I'(m; R)I'(n; R) = I'(m +n; R)B(m,n) + 4//
>

‘4//’ < 4//x2m_1y2"_1e_””2_y2dxdy (m,n are real)
> >

1 2 1 o
< 4//r2m+2" Le™ cos?™ 1 B sin?" ! Odrdh
0<o<z
R<7‘<R\/_
1 2 3 . one
= 4/ prmtn—lo—r dr/ cos?™ 1 9sin® 1 0dp

0
= [['(m + n; RV2) — T'(m + n; R)|B(m, n)
Therefore h}r%n — 00 =0
>
Therefore as R — oo I'(m)['(n) =I'(m+n)B(m,n)
This proof holds for m,n > %

Extension to m,n > 0

o0
We have, for m > 0, I'(m) = / t™te~!dt where the integral exists as an
0
improper integral when m > 0.

Also mI'(m) =T'(m+1) (m>0)

1-8
_ : m—1 o n—1
B(m,n) = a_)o%:%_m_/a u™ (1 —u)"du
1-4
B(m,n+1)=  lim / u™ (1 — u)"du
a—04, 8—0— Jao
m 1-8 1-8
= lim {{u—(l —u "} + — / —u)" 1du}
af—=0 | L m
—a™(1 — 1 — m n
:hm[a( a)" + ﬂﬁ]#— —B(m+1,n)
,f—0 m
B 1 B 1
Therefore (mnt1) Bm+ln (2)

[l =yt = [t @ e (1 w)da
Therefore B(m,n) = B(m+1,n)+ B(m,n+1)  (ii)

Hence from (i) and (i)
B(m,n+1) B(m+1,n) B(m+1,n)+B(m,n+1) B(m,n)

n m m-+n m-+n



Therefore B(m + 1,n) = B(m,n)

n m+n
B -
(m,n+1) m+nB(m,n)
Therefore n mn
Bm+1n+1)= —" _Bim+1,n) = B
(m+1,n+1) o (m+1,n) CET TS (m,n)

(m+n)(m+n+1)T(m+1)I'(n+1)

Therefore B(m,n) =

om) (Trgn I'(m+n+2)
I'(m)I'(n
= Tm+n)  (mn>0)

Example on Fubini’s Theorem
m)mw:/ wlﬁ/ —uyy =gy
_ / - ldto/ —(t+u) =1 gy,

(Using Fubini’s theorem and regarding the integral as a multiple integral.)
/ e [ e (u— 1)V 'du

0 t
:/m#“%ﬁ/wéﬁw YL X (ut)dt

(Note X (ut) =1if u > t, but X(ut) =0if u <)

“tdu /u " (u — )Y dt (Fubini’s theorem)

=), ¢
/ “du/ w1 — w)Y dw (t = uw)
-, ¢

1
Uy [ w1 — w)Y dw
0
=T(z +y)B(x;y)

(All valid for x > 0, y > 0)

Contour Integral

DIAGRAM
Consider [t*~te~!dt around the contour ABA'C'DCA where CDC" is the
circle |[t| = € and AC, C'A’ are the upper and lower sides of the real axis

fromt = e tot = R, and ABA’ is a simple loop. If z is not an integer
= el#=Det j5 not one-valued (as a function of t). Choose that branch of
log ¢t which is real when ¢ is at A. Hence along ABA’ argt increases from 0 to
2m; along A'C" argt = 2m; along C'DC argt decreases from 27 to 0; along
CA argt = 0 i.e. logt returns to its initial value (log R) and hence so does

tzfl



t t

71 and also t*7le~! (since e! is one-valued). Hence t*~'e™" is one-valued
inside and on the whole contour. It is also regular inside and on the contour.

By Cauchy’s Theorem t*tet =0
ABA'C'DCA

e [ == [ [ ~f
ABA/ cA  Joar Jopo

On CA t = v (real and positive)
OnC’A’ t = ve*™ (v real and positive)

R
Hence/ :/ w e U du
CA €

R )
/ — / (u€27rz>zflefudu
C'A €
On C'DC t=ee? 0<0<2r

Hence if z = x + iy
T - 6(mflJriy) logt e(xflJriy)(logeJriO)

|tzfl| — eRe(acfH%‘y)(logeJriO) — e(zfl)logefyH) _ Ezflefya
Hence [t771] < e*~le2mlyl

Also |e7t| = e~ fiel) < e

Hence [t*~le™!| < o 1e2mlyl+e

/ et gt < €x7162ﬂ|y\+62ﬂ_6 _ 27T6x627r\y|+e
C'DC

Hence lim/ =0 ifx=Re(z) >0
e—0.Jc'pe
Hence when € — 0

, R
/ t*~le tdt = (™ — 1)/ u” e du
ABA! 0

Now let R — oo so that the loops ABA’ takes a limiting form as shown.
0

+
We write / for this loop integral.
DIAGRAM
Since lim u” e "du=T(z) (Re(z)>0)

R—o0 Jo
1 0+
['(z) = o /OO t*“te7tdt (Re(z) >0, z #integer)

We can now dispense with the condition Re(z) > 0 since the path of inte-
gration does not pass through the origin. We can show by integration by
parts that this new definition zI'(z) = I'(z + 1). For Re(z) > 0 Euler’s
definite integral definition is equivalent to Weierstrass’s product, and also
to the contour integral definition. Both the product and the contour inte-
gral satisfy 2I'(z) = I'(z + 1). So both define the whole function now in

Therefore

10



the whole plane where both have a meaning. From Weierstrass’s definition
['(2)I'(1 — 2) = mescmz. Hence the contour integral satisfies this equation.

So

1 sin 7z sinmz 1 0+
— = TI'(z = 4 / t* e tdt
I'(1-=2) (2) 7r T oe?mz —1 Joo
emz _ e—TFiZ 1 0+ )
= : e tdt
omi et — 1 /oo ¢
1 0+
= — / t*~te tdt
2me™ Jo

Replacing z by 1 — z we have

Lo t e tdt
[(z)  2mieri(i—2) /oo ‘
—1 [0+ 4
— 2_/ (tefﬂz)fzeftdt
Tl Joo
Put s = te™™ then ds = e ™ dt = —dt
1 1 0+
—_— = —/ s “e’ds
['(z) 27m/-
DIAGRAM

Asymptotic Behaviour of I'(z) as z — oo

We shall show that logT'(z) = (z — 3)logz — z + log(27)2 + €(z) where
€(z) = O(2) in a sector —7 + 6 < argz < m — §. For z = = we show that
e(r)= 0<b<1

ie. D(z) =z 2e72(2m)2 exp{e(2)}

[(2) ~ 27 2e%(2m)2

(Stirling’s formula n! ~ n"*ze " (27)2)

We have by Euler’s Limit Formula.

logl'(z) = Jirlgo[z logn + logn! — {logz +log(z + 1) +--- +log(z +n)}] (1)

Now [ T“lfos)dt -/ L= [(f T R
= S P+ D)+ 7)) = [ (= )f 0y 2

(N.B. This is a starting point for obtaining the Euler-Maclaurin formula for
approximate integration.)

11



Summing from r = o to r = n — 1 we have

| e
0
~ v 1 1) 4 2 oIS g dt (3
=5 fO) + f@) + -+ fln - )+§f(n)—/0(t—§;)f(r+t)t (3)
Define
Pp(t) = t—3 0<t<1
p(t+1) = o(t) t>0
TMn/(V—; Filr+t)dt = dﬁ§f¢r+t Filr+t)dt

H%nce we have
/ log(t + z)dt
0

1 1 n ot
:—logz+log(z—|—1)+---+1og(z+n—1)~|——log(z+n)—/ (b()dt
2 2 0o t+z
Therefore zlogn — logz — - -+ — log(z + n) + logn!
n 1 1
:zlogn—[/ log(t+z)dt+flogz—l—flog(z+n)
0
n ¢()
——dt +1 ! 4
+ g + log n! (4)

Now /n log(t+z)dt = [(t+2)log(t+2)—t]y = (n+2)log(n+2)—n—=zlogz
0
RHS of (4)

1 n
= zlogn— (n+ 2+ 3 ) logln+ )+ (=~ 3 )log 2 +lognt 40— [ X0
2 0o t+z
zlogn—<z+n—|— >log(n+z)

2

:_( )byz G+n+ )%<L%
=~ (s Jin—(zene3) [Fro(Z)] nsle

12

1 z

= zlogn — <z+n+ )[logn—l—log(l—i— )
n

z

n



1 1
:—(n+)logn—z~l—0()
2 n

where O (%) involves z.

Therefore RHS of (4)
B 1 1 " (1)
=|z—=]logz—z+ |logn! — n—|—§ logn+n|— | —=dt+0O

0 n

2 t+z
Now lim LHS of (4)=logI'(2)
We show later that .
= lim ¢ / o) dt (A)
n—0o0 o t+z
and also lim. 5 = O where —m +d <argz <m—9 (B)

1
Assuming (A) we have that Jim. {log n!— (n + 5) logn + n} =

(This result can be proved independently by a rather simpler method.)
Also assuming (B) we can evaluate ¢, we have

logI'(2) +logI' <z + ;) + (22 —1)log2 — log'(2z) = logI' <;>
When (A) and (B) are assumed we have

logI'(2) = (z — %) logz — 2+ c+e€(z)

where lim €(z) =0

Applylng this to the previous equation

[(z—é)logz—z—i—c—l—e( )} —l—[zlog(z—i—%)—(z—i—%)—l—c—i—e(z%—lﬂ

2
1 1
+(22—1)10g2—[(22—2>10g2z—2z+c+6( )} logF<2>
Therefore
lo z{z—l+z—<22—l>}+zlo <1—|—i)+<—z—z—l—|—2z)
& 2 2 & 22 2

1 1 1
+cte(z)+e (z + 5) —€(22)+(log 2) {— (22 — 5) + 2z — 1} =logT' <§>
Taking the limit as z — oo gives

2 2 2
Therefore ¢ = log 22T <§> = log(2m)

. . 1 ) 1\?
[smce lim zlog (1 + —) = lim log (1 + —)
Z—00 2z 2z

N|=

zZ—00

. 1\* 1 1
= log Zh_)rgo <1 + 5) = log (@2) = ﬂ
Hence we have

13



logl'(z) = (z — ;) logz — z + log(27r)% + €(2) (5)
where €(z) = — /OOO o(t)

t+z
To prove (A)
We consider / o) dt
Deﬁne¢1()bygb’()—¢(t) 0<t<1
Therefore ¢1(t) = %tQ — %t (0<t<1)
o) i), [eT) ] du(t)
Then/o e [(t+z)]0+/o t+o™
_ n it
_0+/O wr
¢1(t) is bounded, (0> ¢1(t) > —%)

and also for ¢ > 2|z| we have
t+ 2| >t — |z > 5t

dt (6)

Therefore —— < —
lt+ 22 2

n t
0 / o1(t) dt converges absolutely as n — oc.
o (t+ z)

This proves and we have

_ [ _n()
B /o (t—i—z)th (7)

t + z
To prove B

I) Behaviour of e(x) for real positive z.

e(z) = _/OOO ¢1(t) Jdt

(t+ )
Firstly we see that e(z) > 0. Also 0 < —¢(t) < &
1
Therefore 0 < e(x / S
8 t + x)? 8x

This is sufficient to prove B for real positive x. The bound can however
be improved.

Let ¢o(t) = ¢t° — 112+ 5t 0<t <1

14



II

Pa(t +1) = ¢t
Then ¢2(0) = ¢2(1) =
and ¢h(t) = ¢1(t) + 35
Therefore

) 1
0

o [T,

(t+z)? 12z

R TN 100
2/0 dt

122 (t +z)3
I 20 g < g
0o (t+x)3
Therefore 0 < ¢(z) < & ¢(z) = &

Behaviour of €(z) for complex z

I 10
(=) = _/0 EE

We suppose —7 + 5 <argz <m— 5,

s 2

it + 2> = R* = (rsinf)? csc? X

t=rsinfcot X —rcosf
dt = —rsinfcsc? XdX

|

ORI

(t + x)?

O<d<m

- 8/ |t—i—z|2

_2/0

y z
z
: /9 L 4 axis
%zle/ngth}%
—z
Therefore dt = — d_X
it + 2|2 rsin 6
o) 0 —
Therefore/ dt :/ 4X = .9 1: _0 1
o [t+=22 Jo rsind sinfr sinf|z|

15
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The same result is obtained when 6 < 0
0 ’ T—0
< —

~ sind

0<

sin 0

| < lm—d1
~ 8 sind |z|

Therefore ZILIQO €(z) = 0 uniformly with respect to arg z for

Therefore €(z)

larg z| <7 —§

Some Applications of the asymptotic formula

1
lim flog ['(z) — (z - 5) logz+ 2 — log(QW)%} =0

. Tlz4a) _,

I'(z+a) _ 1
In fact ————=27%=1 -
S Y P +o(3)

I'(z+a) _ 1

log —2 Y —a_ _g) _y _
og ) z aogz+<z—|—a 2) og(z+a)— (z+a)

—(z—%)logz+z+e(z+a)—e(z)

1 1 1 a
zlogz{—a+z—|—a———z+—}+(z+a——>log<1+—)
2 2 2 z

—a+€(z+a) —e(z)

(crent) (o (&) e
:O(%) +e(z+a) —e(2)

Hence the result.

2) Behaviour of T'(z) as T'(z) — +oo
If z=2+iy y— too(z fixed)
then |T'(z + iy)| ~ |y[* 2e” 2™ (2)2
['(z) — 0 as I(z) — £oo for any R(2)

16



Bernoulli Polynomials and Numbers
Define a sequence of polynomials P,(t) n=1,2--- by

Pi(t) = t—1

Pi(t) = Pi(t) P(0) =0
Pi(t) = Ps(t) Py(0) =0
Pi(t) = P(t)— P, Ps(0)=0

5(0) =
Where P, = mean value of Py(t) in (0,1). i.e. Py = [} Py(t)dt
We show that

a) Pi(t), Ps(t), - -+ are anti-symmetric about ¢ = 1
Py(t), Py(t), - - - are symmetric about ¢ = 3
b) Py(t), Py(t), - - - have zeros at t = 0, ¢ = 1 and no others in [0, 1].
Ps(t), Ps(t), -~ have zeros at t = 0, t = 5, ¢t = 1 and no others in [0, 1].
DIAGRAM
1
P(t) = tl— 5 1
Py(t) = §t2 -5t
Py(t) = ét?’ - itQ - 11215
Py(t) = it“ - 11—2253 + 21—4152
Ps(t) = 1170155 — %t‘* + 7—12153 - %t
_ 1 — 1
P o= - Pr=

The Bernoulli Polynomial ¢, (t) is defined by ¢,(t) = n!P,(t).
The Bernoulli number B, is defined by B, = (—1)"(2n)!Pay,.

_1 _ 1 — 1
B1_6 32_30 B3_42

B, 259, |
Al = - il
G T Em T 4a

17



Proof of a)
Pyt — Pu(1 — 1)) = Py(t) + Ply(1 — 1)

dt
] = Pop1(t) + Pop—1(1 — t) (i)
@ Por(t) — Pacir (1~ )] = Py (t) + Py (11

= Po(t) + Po(1 — 1) (ii)
Assume Pyy,_1(t) is anti-symmetric about ¢ = % (A)

then the RHS of (1)=0.
Therefore Poy(t PQk(l —t) = const = Pay(1) — Py (0)

_/ng 1)dt = /P%1 ) =0 by (A)
Therefore A=B: Py is symmetric about ¢t = %

Hence RHS of (ii)=0, and we have

P2k+1(t> + P2k+1(1 - t) = const = P2k+1<1) + P2k+1 (0)

Py;+1(0) = 0 by the construction of P,(t)

1 { _
Therefore Poyy1(1) = / Py (t)dt = / (Por(t) — Py )dt =0
0 0

Therefore Pyyy1(t) is anti-symmetric about ¢ = %

ie. A(k) = A(k+1) and B(k)
Pi(t) =t — 5 therefore A(1) is true, hence (a) is proven by induction.

Proof of (b)

We know that P_1(t) vanishes at ¢ = 0 (by construction) and at ¢ = § and
t = 1 (by anti-symmetry about ¢ = 1). Also Py(t) vanishes at ¢ = 0 by
construction and at t = 1 (by symmetry about t = %) We use the fact that
if f(t) is continuous and f’(t) exists then f’(t) has at least one zero between
consecutive zeros of f(t).

(A) Assume that Pa;_;(t) has no zero other than t = £ in 0 < t < 1. Now
Py,_1(t) # 0 and is anti-symmetric about ¢ = . Hence either Pa_(t) is
positive in 0 < t < % and negative in % <t < 1, or vice versa.

Therefore Py, (t) = Pay_1(t) either steadily increases in 0 < ¢ < 3 and steadily
decreases in 1 <t < 1 or vice versa, and Py, (1) = 0.

Py (0) = Pyi(1) = 0, therefore Pa(t) has no zeros in 0 < t < 1 (B)
Also Pyi(t) — ¢ has at most two zeros in 0 < t < 1 for any c. In particular
Py 1(t) = Pay(t) — Pay has at most 2 zeros in 0 < ¢ < 1, therefore Py (t)
has no zeros in (0, 3) or (3, 1).

Therefore A(k) = A(k + 1) and B(k).

A(1) is true, hence the result by induction.
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N.B. The zeros of Ps(t), P5(t)--- at 0, 3,1 are all simple.
The zeros of Py(t), Ps(t)--- at 0,1 are all double.

It can be proved that

heht -1 00

_Zp

Asymptotic Expansion of logI'(z)
1
2 4

logT(z) = (z — 1) log z — z + log(2m)2 + €(2)
where €(z) = — ; :SMT(; t

Where 1y (t) (formerly ¢;(t)) is defined by
hi(t) = (t—3) O<t<1)

Uit + 1) = 1 (t) t>0

Let 1, (t) = P (t) = 22
Un(t+1) = P,(1) t>0
Then %, (t) = tan-1(t)
Yo () = ¢2n( ) = Pon

(1) 10 ba(H)] | 1 ha(t)
Now / t—i—z /o t+zdt [t—kz] +/o (t—i—z)th
/°°¢3()+P2dt_ 2+l¢3(>] +2!/°° P3(t) &

C(t+2)? (t+2)? (t+2)3

:_+ / t+z

Contlnumg thls_process_we find ~
o0 1y (t) P2 Py (2n — 2)I1P,, > Ponpa(t)

dt = — 2!— coo 4 —————— 4 (2n)! / ——————dt

/0 t+z * o z2n—1 +(2n) 0 (t+ z)+1

n 2 —2 'Pr
Therefore €(z Z ! 2

r=1

Ru(z) = —(2n)!/ooo (w () di

t_|_z)2n+1
—(2n+1)! /
0

Vonta(t)
(t + 2)2n+2
after one further integration by parts with 1a,11(t) = 9n42(1).
Substituting B,, = (—1)"(2n)!P,, we get
oo (-1)"tB, 1
= Rm
E(Z) nz::l (zn _ 1)2n 227171 + (Z)

0<t<1 n=223---

+ R,.(2)
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Magnitude of R, (z)

First note that 15(¢) <0, 9(t) <0 etc.

Let z = x, real and positive. In this case Ro(z) > 0, Ri(z) < 0 etc. i.e.
the R, (x) are alternately positive and negative. Hence €(x) lies between the

sums to n and n + 1 terms of the series
Bl Byl

(—1)" By 1
(2n 4+ 1)(2n + 2) a2n+!

In particular lim 2" 1R,(x) = 0 (n fixed) (1)
-1)"B,
In fact lim 2?1 R, (7) exists and = (2n(+ 1))(27;_{1_ %) (2)

By 1
The property (1) characterises the asymptotic nature of the series i— — .
2

Divergence of the series
The above series taken to oo is divergent for all x. i.e. T}molo R, () does not

exist.
This follows the result (here quoted but not proved) that
7 2n)l T (2m)2
B, 2

2n)! "~ (2m)2

In that case theQIgh term of tth( seﬂes (123 )1
—=1)" (2n — 2)!

—1)"(2n — 2)1-=22n ~

( ) ( n ) (27T>2n Z2n71 27T (27-(-2)27171

< (—1)"(2n — 2)!
And 2—21 ( )Zgnn1 ) diverges for all z.
Hence the result. L B 1
Wewritee(z):féz—gjlzg)+---ar;d .
1 2
log'(2) ~ (z — 5) logz — 2z + 10g(27r)§ + 192 3455 +--

Behaviour of R, (z) — z complex -as z — oo

We have R, (z) = —(2n + 1)! /000 %

We suppose as before that |argz| < 7 — 6, (0 < § < m) necessary for the
existence of R,(z).
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a) when x = Re(z) >0
|t + z| > t+ x for all ¢ > 0 and hence

R < @t 1) [ %dt

0 t
f A=
L

n=0,24,

Either ¢4 (1)
t n=135---

or ¢@n+2()
| Rn(2)] < |Bn()]
If m,, is the upper bound of |, (t)|

2n+1lmye K,  Kpsec®™t'§
(2n+ 1)x2n+1 T2l |Z|2n+1

Hence |R,(2)| = O(|z|~@"+1) largz| < §

<0
>0

|Rn(2)] <

b) when |argz| <7 —§
% |ant2(t)|
Ru(2)] < (2n+1 !/ [¥2ns2(0)]
[u(2)] < 2n+1) 0o |t+ =zt
it + 2| =ycsc X t=ycot X —x

™ |honya(t)|y csc? XdX

[Ra(2)] < (20 4 1)) /0 Ty
< (2n + 1)lm o

- y2n+1

/ / 2n+1
K], K] csc 0

y2n+1 - ’Z‘2n+1

dt

/ " sin®® XdX
0
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