The Gamma Function

I. Integral Definition

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$$

This is convergent since $t^m e^{-t} < t^{m-n} n!$ thus proving convergence at the upper limit and also at the lower limit if z > 0 since $\lim_{\epsilon \to 0} \int_{\epsilon} t^{z-1} dt$ exists. For z complex the convergence holds for R(z) > 0.

We have

$$i) \Gamma(1) = \int_0^\infty e^{-t} dt = 1$$

ii)
$$z\Gamma(z) = \Gamma(z+1)$$

$$\int_0^\infty t^{z-1}e^{-t}dt = \left[\frac{t^z}{z}e^{-t}\right]_0^\infty + \int_0^\infty \frac{t^z}{z}e^{-t}dt$$

$$\Gamma(z) = 0 + \frac{1}{z}\Gamma(z+1)$$

iii)
$$\Gamma(n+1) = n!$$
 (

$(n \ge 0, \text{ an integer})$

II. Alternative Integral Definition

Substitute
$$t=u^2$$
, this gives $\Gamma(z)=2\int_0^\infty u^{2z-1}e^{-u^2}du$

III. Limit Definition (Euler)
$$\Gamma(z) = \lim_{n \to \infty} \frac{n! n^z}{z(z+1) \cdots (z+n)}$$
 This holds for all z except $0, -1, -2, \cdots$

We can derive III from I in two ways

a)
$$e^{-t} = \lim_{n \to \infty} \left(1 - \frac{t}{n}\right)^n$$

Define
$$\Gamma_n(z) = \int_0^n t^{z-1} \left(1 - \frac{t}{n}\right)^n dt$$

$$\int_0^n t^{z-1} e^{-t} dt - \Gamma_n(z) = \int_0^n t^{z-1} \left\{ e^{-t} - \left(1 - \frac{t}{n}\right)^n \right\} dt$$

$$\int_0^n t^{z-1} e^{-t} \left\{ 1 - e^t \left(1 - \frac{t}{n}\right)^n \right\} dt$$

We have

i)
$$e^t \ge t + 1$$
 for all t

ii)
$$e^{-t} \ge 1 - t$$
 for all t

From ii)
$$1 \ge e^t(1-t)$$
 for all t

From i) multiplying by
$$(1-t)$$
, $t \le 1$

$$e^t(1-t) \ge (1-t^2)$$

Therefore
$$1 \ge e^t(1-t) \ge 1-t^2$$
 for $t \le 1$

Taking the nth power $(0 \le t \le 1)$

$$1 \ge e^{nt}(1-t)^n \ge (1-t^2)^n$$

Replace t by $\frac{t}{n}$

$$1 \ge e^t \left(1 - \frac{t}{n}\right)^n \ge \left(1 - \frac{t^2}{n^2}\right)^n \qquad 0 \le t \le n$$

Hence
$$1 - \left(1 - \frac{t^2}{n^2}\right)^n \ge 1 - e^t \left(1 - \frac{t}{n}\right)^n \ge 0$$

For
$$0 \le x \le 1$$
 $0 \le 1 - x^n \le n(1 - x)$

Therefore
$$\frac{t^2}{n} \ge 1 - e^t \left(1 - \frac{t}{n}\right)^n \ge 0$$

Therefore
$$\left| \int_0^n t^{z-1} e^{-t} \left(1 - e^t \left(1 - \frac{t}{n} \right)^n \right) dt \right|$$

$$\leq \int_0^n |t^{z-1}|e^{-t} \left| 1 - e^t \left(1 - \frac{t}{n} \right)^n \right| dt$$

$$\leq \int_0^n |t^{z-1}| e^{-t} \frac{t^2}{n} dt$$

$$|t^{z-1}| = e^{(x-1)\log t} = t^{x-1} = t^{Re(z)-1}$$

Therefore
$$\left| \int_0^n t^{z-1} e^{-t} \left(1 - e^t \left(1 - \frac{t}{n} \right)^n \right) dt \right| \le \frac{1}{n} \int_0^n t^{Re(z)+1} e^{-t} dt$$

$$\leq \frac{1}{n} \int_0^\infty t^{Re(z+1)} e^{-t} dt = \frac{\Gamma(Re(z+2))}{n} = \frac{const}{n}$$

Hence
$$\lim_{n\to\infty} \int_0^n t^{z-1} e^{-t} \left(1 - e^t \left(1 - \frac{t}{n}\right)^n\right) dt = 0$$

Hence
$$\lim_{n\to\infty} \left\{ \int_0^n t^{z-1} e^{-t} dt - \Gamma_n(z) \right\} = 0$$

Therefore $\Gamma(z) = \lim_{n\to\infty} \Gamma_n(z)$

$$\Gamma_n(z) = \int_0^n t^{z-1} \left(1 - \frac{t}{n}\right)^n dt$$

$$= n^z \int_0^1 s^{z-1} (1 - s)^n ds$$

$$= n^z \frac{n}{z} \frac{n-1}{z+1} \cdots \frac{1}{z+n} .1$$

Therefore
$$\Gamma(z) = \lim_{n \to \infty} \frac{n! n^z}{z(z+1) \cdots (z+n)}$$

b) Define
$$f_n(t) = \begin{cases} (1 - \frac{t}{n})^n t^{z-1} & 0 < t < n \\ 0 & t \ge n \end{cases}$$

then $0 \le |f_n(t)| \le |e^{-t}t^{z-1}|$ for every n , and $f_n(t) \to e^{-t}t^{z-1}$ as $n \to \infty$ for every t , also $\exists \int_0^\infty e^{-t}t^{z-1}dt < \infty$

Hence by Lebesgue's theorem on dominated cgce.

$$\int_0^\infty \lim_{n \to \infty} f_n(t) = \lim_{n \to \infty} \int_0^\infty f_n(t) dt$$
i.e.
$$\int_0^\infty e^{-t} t^{z-1} dt = \lim_{n \to \infty} \int_o^n f_n(t) dt$$

and the result follows as before.

IV. Infinite Product Definition (Weierstrass)

Infinite Products

We have a sequence $1 + a_1$, $1 + a_2$, \cdots none of which are zero. We form the product defined by

$$\prod_m = (1+a_1)(1+a_2)\cdots(1+a_m)$$

If \prod_m tends to a limit other than zero as $m \to \infty$ then the infinite product $(1+a_1)(1+a_2)\cdots$ is said to converge and is written $\prod_{n=1}^{\infty} (1+a_n)$.

A necessary condition for convergence is $\lim n \to \infty a_n = 0$, for $1 + a_n = \frac{\prod_n}{\prod_{n=1}}$ and we have $\lim n \to \infty \prod_n = \lim_{n \to \infty} \prod_{n=1} \neq 0$

A sufficient condition for convergence is that the series $\sum_{n=1}^{\infty} \log(1 + a_n)$ is convergent.

(Here we take the principal value of the log.

i.e. such that $-\pi < \arg(1+a_n) < \pi$ and $\log(1+a_n) \to 0$ as $n \to \infty$ and $a_n \to 0$.)

for
$$\prod_{m} = \exp\left\{\log \prod_{1}^{m} (1 + a_n)\right\}$$
$$= \exp\left\{\sum_{n=1}^{m} \log(1 + a_n)\right\}$$

Hence, since the exponential function is continuous, $\limsup s_m = \exp \lim s_m$, and the result follows when we take $s_m = \sum_{m=0}^{\infty} \log(1 + a_n)$.

If $\sum \log(1+a_n)$ is absolutely convergent then $\prod (1+a_n)$ is said to be absolutely convergent.

Theorem

A necessary and sufficient condition for absolute convergence is that the series $\sum a_n$ is absolutely convergent.

Proof

Since $\lim_{n\to\infty} a_n = 0$ we can find m where $|a_n| < \frac{1}{2}$ for $n \ge m$. Then

$$\log(1+a_n) = a_n - \frac{a_n^2}{2} + \frac{a_n^3}{3} - \cdots$$

$$\frac{\log(1+a_n)}{a_n} - 1 = -\frac{a_n}{2} + \frac{a_n^2}{3} - \cdots$$

$$\left|\frac{\log(1+a_n)}{a_n} - 1\right| \le \frac{|a_n|}{2} + \frac{|a_n|^2}{3} + \cdots$$

$$\le \frac{1}{2^2} + \frac{1}{2^3} + \frac{1}{2^4} + \cdots \qquad n \ge m$$

$$\le \frac{1}{2}$$

Therefore
$$\frac{1}{2} \le \left| \frac{\log(1 + a_n)}{a_n} \right| \le \frac{3}{2}$$

Therefore
$$\frac{1}{2}|a_n| \le |\log(1+a_n)| \le \frac{3}{2}|a_n|$$
 $n \ge m$

Hence by the comparison test $\sum |\tilde{\log}(1+a_n)|$ converges or diverges as $\sum |a_n|$ converges or diverges.

N.B. If a finite number of factors $(1 + a_1), \cdots$ vanish and if the product omitting these factors is convergent the product is said to converge to zero. If no factor vanishes but $\lim_{m\to\infty} \prod = 0$ then the product is said to diverge to zero.

Returning to the Gamma-Function we have:

$$\frac{1}{\Gamma(z)} = \lim_{n \to \infty} z n^z \left(1 + \frac{z}{1} \right) \left(1 + \frac{z}{2} \right) \cdots \left(1 + \frac{z}{n} \right)$$

The product $\prod \left(1+\frac{z}{n}\right)$ is divergent $(z\neq 0)$ for

$$\log\left(1+\frac{z}{n}\right) = \frac{z}{n} + O\left(\frac{z^2}{n^2}\right) \qquad \left\{\frac{|z|}{n} < 1\right\}$$

and the series $\sum \frac{1}{n}$ is divergent and $\sum O(\frac{1}{n^2})$ is convergent. Hence $\sum_{m} \log(1 + a_n)$ is divergent $(z \neq 0)$.

Now
$$\prod_{n=1}^{m} \left(1 + \frac{z}{n} \right) = \prod_{n=1}^{m} \left\{ \left(1 + \frac{z}{n} \right) e^{-\frac{z}{n}} \right\} e^{z \left(1 + \frac{1}{2} + \dots + \frac{1}{m} \right)}$$

Also
$$\log\left(1+\frac{z}{n}\right)e^{-\frac{z}{n}} = O\left(\frac{z^2}{n^2}\right)$$

Hence the product $\prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right) e^{-\frac{z}{n}}$ is convergent.

Therefore
$$\begin{split} \frac{1}{\Gamma(z)} &= z \lim_{m \to \infty} m^{-z} e^{z\left(1 + \frac{1}{2} + \dots + \frac{1}{m}\right)} \prod_{n=1}^m \left(1 + \frac{z}{n}\right) e^{-\frac{z}{n}} \\ &= z \lim_{m \to \infty} e^{z\left(1 + \frac{1}{2} + \dots + \frac{1}{m} - \log m\right)} \prod_{m=1}^m \left(1 + \frac{z}{n}\right) e^{-\frac{z}{n}} \end{split}$$

Now
$$\lim_{m \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{m} - \log m \right) = \gamma$$
 (Euler's constant)

Therefore
$$\frac{1}{\Gamma(z)} = ze^{\gamma z} \prod_{n=1}^{\infty} \left(1 + \frac{z}{n}\right) e^{-\frac{z}{n}}$$

This is Weierstrass' definition.

Euler's Constant - Proof that γ exists.

$$1 + \frac{1}{2} + \dots + \frac{1}{m} - \log(m+1) = \sum_{n=1}^{m} \frac{1}{n} - \sum_{n=1}^{m} \log \frac{n+1}{n}$$

$$= \sum_{n=1}^{m} u_n \text{ where } u_n = \frac{1}{n} - \log \frac{n+1}{n}$$

$$= \frac{1}{n} \int_0^1 dt - \int_0^1 \frac{dt}{t+n} = \int_0^1 \left(\frac{1}{n} - \frac{1}{t+n}\right) dt$$

$$= \int_0^1 \frac{tdt}{n(t+n)} \le \int_0^1 \frac{t}{n^2} dt = \frac{1}{2n^2}$$

Therefore $\sum u_n$ is convergent by comparison with $\sum \frac{1}{2n^2}$

Therefore
$$\lim_{m\to\infty} \left[1 + \frac{1}{2} + \dots + \frac{1}{m} - \log(m+1)\right] = \sum_{n=1}^{\infty} u_n$$

Now $1 + \frac{1}{2} + \dots + \frac{1}{m} - \log m = \left[1 + \frac{1}{2} \dots \frac{1}{m} - \log(m+1)\right] + \log \frac{m+1}{m}$
and $\lim_{m\to\infty} \log \frac{m+1}{m} = \log 1 = 0$. Therefore $\gamma = \sum_{n=1}^{\infty} u_n$.

Properties of $\Gamma(z)$ (Weierstrass Form)

- i) The RHS is convergent for all $z < \infty$. Hence $\Gamma(z)$ has no zeros.
- ii) The RHS has simple zeros at $z=0,-1,\cdots$. Hence $\Gamma(z)$ has simple poles at these points.

iii)
$$z\Gamma(z) = \Gamma(z+1)$$

iv)
$$\Gamma(z)\Gamma(1-z) = \pi \csc \pi z$$
 $\left(\frac{\sin z}{z} = \prod \left(1 - \frac{z^2}{n^2\pi^2}\right)\right)$

v)
$$2^{2z-1}\Gamma(z)\Gamma(z+\frac{1}{2}) = \Gamma(\frac{1}{2})\Gamma(2z)$$
 duplication formula

vi)
$$\Gamma(\frac{1}{2}) = \pi^{\frac{1}{2}}$$
 (same as iv) but with $z = \frac{1}{2}$)

Behaviour of $\Gamma(x)$ for real x

$$\Gamma(x) > 0 \text{ for } x > 0 \qquad \Gamma(n) = (n-1)!$$

$$z(z+1)\cdots(z+n)\Gamma(z) = \Gamma(n+1+z)$$
Therefore $(z+n)\Gamma(z) = \frac{\Gamma(n+1+z)}{z(z+1)\cdots(z+n+1)}$

$$\lim_{z\to -n}(z+n)\Gamma(z)=\frac{\Gamma(1)}{-n(-n+1)\cdots(-1)}=\frac{(-1)^n}{n!}$$
 This is the residue at the simple pole $z=-n$. DIAGRAM

$$B(m,n) = \int_0^1 u^{m-1} (1-u)^{n-1} du \qquad (m,n>0)$$

We shall show that
$$B(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$

We note that
$$B(m, n) = B(n, m)$$
 (putting $u = 1 - v$).

Also putting $u = \cos^2 \theta$

$$B(m,n) = 2\int_0^{\frac{\pi}{2}} \cos^{2m-1}\theta \sin^{2n-1}\theta d\theta$$

Define
$$\Gamma(m; R) = 2 \int_0^R x^{2m-1} e^{-x^2} dx$$

then
$$\lim_{R\to\infty} \Gamma(m;R) = \Gamma(m)$$

$$\Gamma(m;R)\Gamma(n;R) = 4 \int_0^R x^{2m-1} e^{-x^2} dx \int_0^R y^{2n-1} e^{-y^2} dy$$

Assume for the moment that $m, n \ge \frac{1}{2}$. Then $x^{2m-1}e^{-x^2}y^{2n-1}e^{-y^2}$ is a continuous function of x and y in $x \ge 0$, $y \ge 0$.

Hence
$$4 \int_{\text{square}} \int x^{2m-1} e^{-x^2} y^{2n-1} e^{-y^2} dx dy = 4 \int_{0}^{R} x^{2m-1} e^{-x^2} dx \int_{0}^{R} y^{2n-1} e^{-y^2} dy$$

$$0 \le x \le R$$

$$0 \le y \le R$$

DIAGRAM

$$4 \iint_{\text{square}} = 4 \iint_{\text{quadrant}} + 4 \iint_{\sum}$$

$$0 \le \theta \le \frac{\pi}{2}$$

$$4 \iint_{\text{quadrant}} = 4 \iint_{0} x^{2m-1} y^{2n-1} e^{-r^2} r dr d\theta$$

$$= 4 \iint_{0} r^{2m+2n-1} e^{-r^2} dr \int_{0}^{\frac{\pi}{2}} \cos^{2m-1} \theta \sin^{2n-1} \theta d\theta$$

$$= \Gamma(m+n;R) B(m,n)$$

Therefore
$$\Gamma(m;R)\Gamma(n;R) = \Gamma(m+n;R)B(m,n) + 4\int\int\limits_{\Sigma} \left|4\int\int\limits_{\Sigma}\right| \leq 4\int\int\limits_{\Sigma} x^{2m-1}y^{2n-1}e^{-x^2-y^2}dxdy \qquad (m,n \text{ are real})$$

$$\leq 4\int\int\limits_{0\leq\theta\leq\frac{\pi}{2}} r^{2m+2n-1}e^{-r^2}\cos^{2m-1}\theta\sin^{2n-1}\theta drd\theta$$

$$\leq 4\int\int\limits_{0\leq\theta\leq\frac{\pi}{2}} r^{2m+2n-1}e^{-r^2}\cos^{2m-1}\theta\sin^{2n-1}\theta drd\theta$$

$$= 4\int\int\limits_{0}^{R\sqrt{2}} r^{2m+2n-1}e^{-r^2}dr\int\limits_{0}^{\frac{\pi}{2}}\cos^{2m-1}\theta\sin^{2n-1}\theta d\theta$$

$$= [\Gamma(m+n;R\sqrt{2}) - \Gamma(m+n;R)]B(m,n)$$
 Therefore $\lim_{R\to\infty} \int\int\limits_{\infty} = 0$ Therefore as $R\to\infty$
$$\Gamma(m)\Gamma(n) = \Gamma(m+n)B(m,n)$$
 This proof holds for $m,n\geq\frac{1}{2}$.

Extension to m, n > 0

We have, for m > 0, $\Gamma(m) = \int_0^\infty t^{m-1} e^{-t} dt$ where the integral exists as an improper integral when m > 0.

Also
$$m\Gamma(m) = \Gamma(m+1)$$
 $(m>0)$

$$B(m,n) = \lim_{\alpha \to 0+,\beta \to 0-} \int_{\alpha}^{1-\beta} u^{m-1} (1-u)^{n-1} du$$

$$B(m,n+1) = \lim_{\alpha \to 0+,\beta \to 0-} \int_{\alpha}^{1-\beta} u^{m-1} (1-u)^n du$$

$$= \lim_{\alpha,\beta \to 0} \left\{ \left[\frac{u^m}{m} (1-u)^n \right]_{\alpha}^{1-\beta} + \frac{n}{m} \int_{\alpha}^{1-\beta} u^m (1-u)^{n-1} du \right\}$$

$$= \lim_{\alpha,\beta \to 0} \left[\frac{-\alpha^m (1-\alpha)^n + (1-\beta)^m \beta^n}{m} \right] + \frac{n}{m} B(m+1,n)$$
Therefore $\frac{B(m,n+1)}{n} = \frac{B(m+1,n)}{m}$ (i)
$$\int_0^1 u^{m-1} (1-u)^{n-1} = \int_0^1 u^{m-1} (1-u)^{n-1} \{u + (1-u)\} du$$
Therefore $B(m,n) = B(m+1,n) + B(m,n+1)$ (ii)

Hence from (i) and (ii)
$$\frac{B(m, n+1)}{n} = \frac{B(m+1, n)}{m} = \frac{B(m+1, n) + B(m, n+1)}{m+n} = \frac{B(m, n)}{m+n}$$

Therefore
$$B(m+1,n) = \frac{m}{m+n}B(m,n)$$

 $B(m,n+1) = \frac{n}{m+n}B(m,n)$
Therefore
$$B(m+1,n+1) = \frac{n}{m+n+1}B(m+1,n) = \frac{mn}{(m+n)(m+n+1)}B(m,n)$$
Therefore $B(m,n) = \frac{(m+n)(m+n+1)}{mn}\frac{\Gamma(m+1)\Gamma(n+1)}{\Gamma(m+n+2)}$

$$= \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)} \qquad (m,n>0)$$

Example on Fubini's Theorem
$$\Gamma(x)\Gamma(y)=\int_0^\infty e^{-t}t^{x-1}dt\int_0^\infty e^{-u}u^{y-1}du$$

$$=\int_0^\infty t^{x-1}dt\int_0^\infty e^{-(t+u)}u^{y-1}du$$
 (Using Fubini's theorem and regarding the integral as a multiple integral.)
$$\int_0^\infty t^{x-1}dt\int_t^\infty e^{-u}(u-t)^{y-1}du$$

$$=\int_0^\infty t^{x-1}dt\int_0^\infty e^{-u}(u-t)^{y-1}X(ut)dt$$
 (Note $X(ut)=1$ if $u>t$, but $X(ut)=0$ if $u\le t$)
$$=\int_0^\infty e^{-u}du\int_0^u t^{x-1}(u-t)^{y-1}dt$$
 (Fubini's theorem)
$$=\int_0^\infty e^{-u}du\int_0^1 u^{x+y-1}w^{x-1}(1-w)^{y-1}dw$$

$$=\int_0^\infty e^{-u}u^{x+y-1}du\int_0^1 w^{x-1}(1-w)^{y-1}dw$$

$$=\Gamma(x+y)B(x;y)$$
 (All valid for $x>0,\ y>0$)

Contour Integral

DIAGRAM

Consider $\int t^{z-1}e^{-t}dt$ around the contour ABA'C'DCA where CDC' is the circle $|t| = \epsilon$ and AC, C'A' are the upper and lower sides of the real axis from $t = \epsilon$ to t = R, and ABA' is a simple loop. If z is not an integer $t^{z-1} = e^{(z-1)\log t}$ is not one-valued (as a function of t). Choose that branch of $\log t$ which is real when t is at A. Hence along ABA' arg t increases from 0 to 2π ; along A'C' arg $t=2\pi$; along C'DC arg t decreases from 2π to 0; along CA arg t=0 i.e. $\log t$ returns to its initial value ($\log R$) and hence so does

 t^{z-1} , and also $t^{z-1}e^{-t}$ (since e^{-t} is one-valued). Hence $t^{z-1}e^{-t}$ is one-valued inside and on the whole contour. It is also regular inside and on the contour.

By Cauchy's Theorem
$$\int_{ABA'C'DCA} t^{z-1}e^{-t} = 0$$
 i.e.
$$\int_{ABA'} = -\int_{CA} + \int_{C'A'} - \int_{C'DC}$$
 On CA $t = v$ (real and positive) On $C'A'$ $t = ve^{2\pi i}$ (v real and positive) Hence
$$\int_{CA} = \int_{\epsilon}^{R} u^{z-1}e^{-u}du$$

$$\int_{C'A'} = \int_{\epsilon}^{R} (ue^{2\pi i})^{z-1}e^{-u}du$$
 On $C'DC$ $t = \epsilon e^{i\theta}$ $0 \le \theta \le 2\pi$ Hence if $z = x + iy$
$$t^{z-1} = e^{(x-1+iy)\log t} = e^{(x-1+iy)(\log \epsilon + i\theta)} = e^{(x-1)\log \epsilon - y\theta)} = \epsilon^{x-1}e^{-y\theta}$$
 Hence $|t^{z-1}| \le e^{Re(x-1+iy)(\log \epsilon + i\theta)} = e^{(x-1)\log \epsilon - y\theta)} = \epsilon^{x-1}e^{-y\theta}$ Hence $|t^{z-1}| \le \epsilon^{x-1}e^{2\pi|y|}$ Also $|e^{-t}| = e^{-Re(t)} \le e^{\epsilon}$ Hence $|t^{z-1}e^{-t}| \le \epsilon^{x-1}e^{2\pi|y|+\epsilon}$ Therefore
$$\left|\int_{C'DC} t^{z-1}e^{-t}dt\right| \le \epsilon^{x-1}e^{2\pi|y|+\epsilon} 2\pi\epsilon = 2\pi\epsilon^x e^{2\pi|y|+\epsilon}$$
 Hence $\lim_{\epsilon \to 0} \int_{C'DC} = 0$ if $x = Re(z) > 0$ Hence when $\epsilon \to 0$
$$\int_{ABA'} t^{z-1}e^{-t}dt = (e^{2\pi iz} - 1)\int_{0}^{R} u^{z-1}e^{-u}du$$
 Now let $R \to \infty$ so that the loops ABA' takes a limiting form as shown. We write $\int_{0}^{0+1} t^{x-1}e^{-t}dt = t^{x-1}e^{$

DIAGRAM

Since $\lim_{R \to \infty} \int_0^R u^{z-1} e^{-u} du = \Gamma(z) \quad (Re(z) > 0)$ $\Gamma(z) = \frac{1}{e^{2\pi i z} - 1} \int_{-\infty}^{0+} t^{z-1} e^{-t} dt \quad (Re(z) > 0, \ z \neq \text{integer})$

We can now dispense with the condition Re(z) > 0 since the path of integration does not pass through the origin. We can show by integration by parts that this new definition $z\Gamma(z) = \Gamma(z+1)$. For Re(z) > 0 Euler's definite integral definition is equivalent to Weierstrass's product, and also to the contour integral definition. Both the product and the contour integral satisfy $z\Gamma(z) = \Gamma(z+1)$. So both define the whole function now in

the whole plane where both have a meaning. From Weierstrass's definition $\Gamma(z)\Gamma(1-z)=\pi\csc\pi z$. Hence the contour integral satisfies this equation. So

$$\frac{1}{\Gamma(1-z)} = \Gamma(z) \frac{\sin \pi z}{\pi} = \frac{\sin \pi z}{\pi} \frac{1}{e^{2\pi i z} - 1} \int_{\infty}^{0+} t^{z-1} e^{-t} dt$$

$$= \frac{e^{\pi i z} - e^{-\pi i z}}{2\pi i} \frac{1}{e^{2\pi i z} - 1} \int_{\infty}^{0+} t^{z-1} e^{-t} dt$$

$$= \frac{1}{2\pi i e^{\pi i z}} \int_{\infty}^{0+} t^{z-1} e^{-t} dt$$

Replacing z by 1-z we have

$$\frac{1}{\Gamma(z)} = \frac{1}{2\pi i e^{\pi i(1-z)}} \int_{\infty}^{0+} t^{-z} e^{-t} dt$$
$$= \frac{-1}{2\pi i} \int_{\infty}^{0+} (te^{-\pi i})^{-z} e^{-t} dt$$

Put
$$s=te^{-\pi i}$$
 then $ds=e^{-\pi i}dt=-dt$
$$\frac{1}{\Gamma(z)}=\frac{1}{2\pi i}\int_{-\infty}^{0+}s^{-z}e^{s}ds$$
 DIAGRAM

Asymptotic Behaviour of $\Gamma(z)$ as $z \to \infty$

We shall show that $\log \Gamma(z) = (z - \frac{1}{2}) \log z - z + \log(2\pi)^{\frac{1}{2}} + \epsilon(z)$ where $\epsilon(z) = O(\frac{1}{z})$ in a sector $-\pi + \delta \leq \arg z \leq \pi - \delta$. For z = x we show that $\epsilon(x) = \frac{\theta}{12x} \ 0 < \theta < 1$

i.e.
$$\Gamma(z) = z^{z-\frac{1}{2}}e^{-z}(2\pi)^{\frac{1}{2}}\exp\{\epsilon(z)\}$$

 $\Gamma(z) \sim z^{z-\frac{1}{2}}e^{-z}(2\pi)^{\frac{1}{2}}$

(Stirling's formula $n! \sim n^{n+\frac{1}{2}}e^{-n}(2\pi)^{\frac{1}{2}}$)

We have by Euler's Limit Formula.

$$\log \Gamma(z) = \lim_{n \to \infty} [z \log n + \log n! - \{\log z + \log(z+1) + \dots + \log(z+n)\}]$$
 (1)

Now
$$\int_{r}^{r+1} f(t)dt = \int_{0}^{1} 1.f(r+t)dt = \left[(t - \frac{1}{2})f(r+t) \right]_{0}^{1} - \int_{0}^{1} (t - \frac{1}{2}f'(r+t)dt) dt$$

$$= \frac{1}{2} \left[f(r+1) + f(r) \right] - \int_{0}^{1} (t - \frac{1}{2})f'(r+t)dt$$
(2)

(N.B. This is a starting point for obtaining the Euler-Maclaurin formula for approximate integration.)

Summing from
$$r = o$$
 to $r = n - 1$ we have
$$\int_{0}^{n} f(t)dt$$

$$= \frac{1}{2}f(0) + f(1) + \dots + f(n-1) + \frac{1}{2}f(n) - \int_{0}^{1} (t - \frac{1}{2}\sum_{r=0}^{n-1} f'(r+t)dt \quad (3)$$
Define
$$\phi(t) = t - \frac{1}{2} \quad 0 \le t < 1$$

$$\phi(t+1) = \phi(t) \quad t \ge 0$$
Then
$$\int_{0}^{1} (t - \frac{1}{2})\sum_{r=0}^{n-1} f'(r+t)dt = \int_{0}^{1}\sum_{r=0}^{n-1} \phi(r+t)f'(r+t)dt$$

$$= \int_{0}^{n} \phi(t)f'(t)dt$$
Hence we have
$$\int_{0}^{1} \log(t+z)dt$$

$$= \frac{1}{2}\log z + \log(z+1) + \dots + \log(z+n-1) + \frac{1}{2}\log(z+n) - \int_{0}^{n}\frac{\phi(t)}{t+z}dt$$
Therefore $z\log n - \log z - \dots - \log(z+n) + \log n!$

$$= z\log n - \left[\int_{0}^{n}\log(t+z)dt + \frac{1}{2}\log z + \frac{1}{2}\log(z+n) + \int_{0}^{n}\frac{\phi(t)}{t+z}dt + \log n!\right] \quad (4)$$
Now
$$\int_{0}^{n}\log(t+z)dt = \left[(t+z)\log(t+z) - t\right]_{0}^{n} = (n+z)\log(n+z) - n - z\log z$$
RHS of (4)

$$= z\log n - \left(n+z+\frac{1}{2}\right)\log(n+z) + \left(z-\frac{1}{2}\right)\log z + \log n! + n - \int_{0}^{n}\frac{\phi(t)}{t+z}dt$$

$$z\log n - \left(z+n+\frac{1}{2}\right)\log(n+z)$$

$$= z\log n - \left(z+n+\frac{1}{2}\right)\log n + \log\left(1+\frac{z}{n}\right)$$

$$= -\left(n+\frac{1}{2}\right)\log n - \left(z+n+\frac{1}{2}\right)\log n - \left(z+n+\frac{1}{2}\right)\log n + \log\left(1+\frac{z}{n}\right)$$

 $= -\left(n + \frac{1}{2}\right)\log n - \left(z + n + \frac{1}{2}\right) \left|\frac{z}{n} + O\left(\frac{z^2}{n^2}\right)\right| \qquad n > |z|$

$$= -\left(n + \frac{1}{2}\right)\log n - z + O\left(\frac{1}{n}\right)$$

where $O\left(\frac{1}{n}\right)$ involves z.

Therefore RHS of (4)

$$= \left(z - \frac{1}{2}\right) \log z - z + \left[\log n! - \left(n + \frac{1}{2}\right) \log n + n\right] - \int_0^n \frac{\phi(t)}{t+z} dt + O\left(\frac{1}{n}\right) dt$$

Now $\lim_{z \to \infty} LHS \text{ of } (4) = \log \Gamma(z)$

We show later that
$$-\epsilon(z) = \lim_{n \to \infty} \int_0^n \frac{\phi(t)}{t+z} dt = \int_0^\infty \frac{\phi(t)}{t+z} dt$$
 (A) and also $\lim_{z \to \infty} \epsilon(z) = 0$ where $-\pi + \delta < \arg z < \pi - \delta$ (B)

and also
$$\lim_{z \to \infty} \epsilon(z) = 0$$
 where $-\pi + \delta < \arg z < \pi - \delta$ (B)

Assuming (A) we have that
$$\lim_{n\to\infty} \left\{ \log n! - \left(n + \frac{1}{2}\right) \log n + n \right\} = c$$

(This result can be proved independently by a rather simpler method.)

Also assuming (B) we can evaluate c, we have

$$\log \Gamma(z) + \log \Gamma\left(z + \frac{1}{2}\right) + (2z - 1)\log 2 - \log \Gamma(2z) = \log \Gamma\left(\frac{1}{2}\right)$$

When (A) and (B) are assumed we have

$$\log \Gamma(z) = \left(z - \frac{1}{2}\right) \log z - z + c + \epsilon(z)$$

where $\lim_{z \to \infty} \dot{\epsilon}(z) = 0$ Applying this to the previous equation

$$\left[\left(z - \frac{1}{2} \right) \log z - z + c + \epsilon(z) \right] + \left[z \log \left(z + \frac{1}{2} \right) - \left(z + \frac{1}{2} \right) + c + \epsilon \left(z + \frac{1}{2} \right) \right] + (2z - 1) \log 2 - \left[\left(2z - \frac{1}{2} \right) \log 2z - 2z + c + \epsilon(2z) \right] = \log \Gamma\left(\frac{1}{2} \right)$$

$$\log z \left[z - \frac{1}{2} + z - \left(2z - \frac{1}{2} \right) \right] + z \log \left(1 + \frac{1}{2z} \right) + \left(-z - z - \frac{1}{2} + 2z \right) + c + \epsilon(z) + \epsilon \left(z + \frac{1}{2} \right) - \epsilon(2z) + (\log 2) \left[-\left(2z - \frac{1}{2} \right) + 2z - 1 \right] = \log \Gamma \left(\frac{1}{2} \right)$$

$$c + \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \log 2 = \log \Gamma \left(\frac{1}{2}\right)$$

Therefore $c = \log 2^{\frac{1}{2}} \Gamma\left(\frac{1}{2}\right) = \log(2\pi)^{\frac{1}{2}}$

$$\left[\operatorname{since } \lim_{z \to \infty} z \log \left(1 + \frac{1}{2z}\right) = \lim_{z \to \infty} \log \left(1 + \frac{1}{2z}\right)^z \\ = \log \lim_{z \to \infty} \left(1 + \frac{1}{2z}\right)^z = \log \left(e^{\frac{1}{2}}\right) = \frac{1}{2}\right]$$

Hence we have

$$\log \Gamma(z) = \left(z - \frac{1}{2}\right) \log z - z + \log(2\pi)^{\frac{1}{2}} + \epsilon(z) \tag{5}$$

where
$$\epsilon(z) = -\int_0^\infty \frac{\phi(t)}{t+z} dt$$
 (6)

To prove (A)

We consider
$$\int_0^n \frac{\phi(t)}{t+z} dt$$

Define $\phi_1(t)$ by $\phi'_1(t) = \phi(t)$ $0 < t < 1$
 $\phi_1(0) = 0$ $\phi_1(t+1) = \phi_1(t)$ $t \ge 0$
Therefore $\phi_1(t) = \frac{1}{2}t^2 - \frac{1}{2}t$ $(0 \le t < 1)$
Then $\int_0^n \frac{\phi(t)}{t+z} dt = \int_0^n \frac{\phi'_1(t)}{t+z} dt = \left[\frac{\phi_1(T)}{(t+z)}\right]_0^n + \int_0^n \frac{\phi_1(t)}{(t+z)^2} dt$
 $= 0 + \int_0^n \frac{\phi_1(t)}{(t+z)^2} dt$

 $\phi_1(t)$ is bounded, $(0 \ge \phi_1(t) \ge -\frac{1}{8})$ and also for t > 2|z| we have

$$|t+z| \ge t - |z| > \frac{1}{2}t$$

$$|t+z| \ge t - |z| > \frac{1}{2}t$$

Therefore $\frac{1}{|t+z|^2} < \frac{4}{t^2}$

So $\int_0^n \frac{\phi_1(t)}{(t+z)^2} dt$ converges absolutely as $n \to \infty$.

This proves (A) and we have

$$\epsilon(z) = -\int_0^\infty \frac{\dot{\phi}(t)}{t+z} dt = -\int_0^\infty \frac{\phi_1(t)}{(t+z)^2} dt$$
 (7)

To prove B

I) Behaviour of $\epsilon(x)$ for real positive x.

$$\epsilon(x) = -\int_0^\infty \frac{\phi_1(t)}{(t+x)^2} dt$$

Firstly we see that $\epsilon(x) > 0$. Also $0 \le -\phi(t) \le \frac{1}{8}$

Therefore
$$0 \le \epsilon(x) \le \frac{1}{8} \int_0^\infty \frac{dt}{(t+x)^2} = \frac{1}{8x}$$

This is sufficient to prove B for real positive x. The bound can however be improved.

Let
$$\phi_2(t) = \frac{1}{6}t^3 - \frac{1}{4}t^2 + \frac{1}{12}t \quad 0 \le t < 1$$

$$\phi_2(t+1) = \phi_2(t) \quad t > 0$$

Then
$$\phi_2(0) = \phi_2(1) = 0$$

and
$$\phi_2'(t) = \phi_1(t) + \frac{1}{12}$$

Therefore

$$\epsilon(x) = -\int_0^\infty \frac{-\frac{1}{12} + \phi_2'(t)}{(t+x)^2} dt = \frac{1}{12x} - \left[\frac{\phi_2(t)}{(t+x)^2} \right]_0^\infty - 2\int_0^\infty \frac{\phi_2(t)dt}{(t+x)^3} dt$$
$$= \frac{1}{12x} - 2\int_0^\infty \frac{\phi_2(t)}{(t+x)^3} dt$$

$$\int_0^\infty \frac{\phi_2(t)}{(t+x)^3} dt > 0$$

Therefore
$$0 \le \epsilon(x) \le \frac{1}{12x}$$
 $\epsilon(x) = \frac{\theta}{12x}$ $0 \le \theta \le 1$

II Behaviour of $\epsilon(z)$ for complex z

$$\epsilon(z) = -\int_0^\infty \frac{\phi_1(t)}{(t+z)^2} dt$$

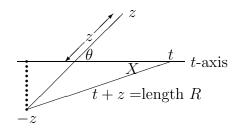
We suppose $-\pi + \delta \leq \arg z \leq \pi - \delta$, $0 < \delta < \pi$

$$|\epsilon(z)| \le \int_0^\infty \left| \frac{\phi_1(t)}{(t+z)^2} \right| dt \le \frac{1}{8} \int_0^\infty \frac{dt}{|t+z|^2}$$

$$|t+z|^2 = R^2 = (r\sin\theta)^2\csc^2 X$$

$$t = r\sin\theta\cot X - r\cos\theta$$

$$dt = -r\sin\theta\csc^2 X dX$$



Therefore
$$\frac{dt}{|t+z|^2} = -\frac{dX}{r\sin\theta}$$

Therefore
$$\int_0^\infty \frac{dt}{|t+z|^2} = \int_\theta^0 \frac{-dX}{r\sin\theta} = \frac{\theta}{\sin\theta} \frac{1}{r} = \frac{\theta}{\sin\theta} \frac{1}{|z|}$$

The same result is obtained when $\theta < 0$

$$0 \le \left| \frac{\theta}{\sin \theta} \right| \le \frac{\pi - \delta}{\sin \delta}$$

Therefore
$$\epsilon(z)| \leq \frac{1}{8} \frac{\pi - \delta}{\sin \delta} \frac{1}{|z|}$$

Therefore $\lim_{z\to\infty} \epsilon(z) = 0$ uniformly with respect to arg z for $|\arg z| \le \pi - \delta$

Some Applications of the asymptotic formula
$$\lim_{z\to\infty}\left[\log\Gamma(z)-\left(z-\frac{1}{2}\right)\log z+z-\log(2\pi)^{\frac{1}{2}}\right]=0$$

1)
$$\lim_{z \to \infty} \frac{\Gamma(z+a)}{\Gamma(z)} z^{-a} = 1$$

In fact
$$\frac{\Gamma(z+a)}{\Gamma(z)}z^{-a} = 1 + O\left(\frac{1}{z}\right)$$

$$\log \frac{\Gamma(z+a)}{\Gamma(z)} z^{-a} = -a \log z + \left(z+a-\frac{1}{2}\right) \log(z+a) - (z+a)$$

$$-\left(z - \frac{1}{2}\right)\log z + z + \epsilon(z + a) - \epsilon(z)$$

$$= \log z \left\{ -a + z + a - \frac{1}{2} - z + \frac{1}{2} \right\} + \left(z + a - \frac{1}{2} \right) \log \left(1 + \frac{a}{z} \right)$$

$$-a + \epsilon(z+a) - \epsilon(z)$$

$$= \left(z+a-\frac{1}{2}\right)\left(\frac{a}{2}+O\left(\frac{1}{z^2}\right)\right)-a+\epsilon(z+a)-\epsilon(z)$$

$$=O\left(\frac{1}{2}\right)+\epsilon(z+a)-\epsilon(z)$$

Hence the result.

2) Behaviour of
$$\Gamma(z)$$
 as $T(z) \to \pm \infty$

If
$$z = x + iy$$
 $y \to \pm \infty(x \text{ fixed})$

then
$$|\Gamma(x+iy)| \sim |y|^{x-\frac{1}{2}} e^{-\frac{1}{2}\pi|y|} (2\pi)^{\frac{1}{2}}$$

$$\Gamma(z) \to 0$$
 as $I(z) \to \pm \infty$ for any $R(z)$

Bernoulli Polynomials and Numbers

Define a sequence of polynomials $P_n(t)$ $n = 1, 2 \cdots$ by

$$\begin{array}{lll} P_1(t) & = & t - \frac{1}{2} \\ P_2'(t) & = & P_1(t) & P_2(0) = 0 \\ P_3'(t) & = & P_2(t) - \bar{P}_2 & P_3(0) = 0 \\ P_4'(t) & = & P_3(t) & P_4(0) = 0 \\ P_5'(t) & = & P_4(t) - \bar{P}_4 & P_5(0) = 0 \end{array}$$

Where \bar{P}_2 = mean value of $P_2(t)$ in (0,1). i.e. $\bar{P}_2 = \int_0^1 P_2(t) dt$ We show that

- a) $P_1(t)$, $P_3(t)$, \cdots are anti-symmetric about $t = \frac{1}{2}$ $P_2(t)$, $P_4(t)$, \cdots are symmetric about $t = \frac{1}{2}$
- b) $P_2(t)$, $P_4(t)$, \cdots have zeros at t=0, t=1 and no others in [0,1]. $P_3(t)$, $P_5(t)$, \cdots have zeros at t=0, $t=\frac{1}{2}$, t=1 and no others in [0,1].

DIAGRAM

$$P_{1}(t) = t - \frac{1}{2}$$

$$P_{2}(t) = \frac{1}{2}t^{2} - \frac{1}{2}t$$

$$P_{3}(t) = \frac{1}{6}t^{3} - \frac{1}{4}t^{2} + \frac{1}{12}t$$

$$P_{4}(t) = \frac{1}{24}t^{4} - \frac{1}{12}t^{3} + \frac{1}{24}t^{2}$$

$$P_{5}(t) = \frac{1}{120}t^{5} - \frac{1}{48}t^{4} + \frac{1}{72}t^{3} - \frac{1}{720}t$$

$$\bar{P}_{2} = -\frac{1}{12} \qquad \bar{P}_{4} = \frac{1}{720}$$

The Bernoulli Polynomial $\phi_n(t)$ is defined by $\phi_n(t) = n!P_n(t)$. The Bernoulli number B_n is defined by $B_n = (-1)^n(2n)!P_{2n}$.

$$B_1 = \frac{1}{6}$$
 $B_2 = \frac{1}{30}$ $B_3 = \frac{1}{42}$
Also $\frac{B_n}{(2n)!} = \frac{2S_{2n}}{(2\pi)^{2n}}$ $S_k = \sum_{r=0}^{\infty} \frac{1}{r^k}$

Proof of a)

$$\frac{d}{dt} \left[P_{2k}(t) - P_{2k}(1-t) \right] = P'_{2k}(t) + P'_{2k}(1-t)
= P_{2k-1}(t) + P_{2k-1}(1-t)$$
(i)

$$\frac{d}{dt} \left[P_{2k+1}(t) - P_{2k+1}(1-t) \right] = P'_{2k+1}(t) + P'_{2k+1}(1-t)
= P_{2k}(t) + P_{2k}(1-t)$$
(ii)

Assume $P_{2k-1}(t)$ is anti-symmetric about $t = \frac{1}{2}$ (A) then the RHS of (i)=0.

Therefore
$$P_{2k}(t) - P_{2k}(1-t) = const = P_{2k}(1) - P_{2k}(0)$$

= $\int_0^1 P'_{2k}(t)dt = \int_0^1 P_{2k-1}(t) = 0$ by (A)

Therefore $A \Rightarrow B$: P_{2k} is symmetric about $t = \frac{1}{2}$.

Hence RHS of (ii)=0, and we have

$$P_{2k+1}(t) + P_{2k+1}(1-t) = const = P_{2k+1}(1) + P_{2k+1}(0)$$

 $P_{2k+1}(0) = 0$ by the construction of $P_n(t)$

Therefore
$$P_{2k+1}(1) = \int_0^1 P'_{2k+1}(t)dt = \int_0^1 (P_{2k}(t) - \bar{P}_{2k})dt = 0$$

Therefore $P_{2k+1}(t)$ is anti-symmetric about $t = \frac{1}{2}$.

i.e. $A(k) \Rightarrow A(k+1)$ and B(k)

 $P_1(t) = t - \frac{1}{2}$ therefore A(1) is true, hence (a) is proven by induction.

Proof of (b)

We know that $P_{2k-1}(t)$ vanishes at t=0 (by construction) and at $t=\frac{1}{2}$ and t=1 (by anti-symmetry about $t=\frac{1}{2}$). Also $P_{2k}(t)$ vanishes at t=0 by construction and at t=1 (by symmetry about $t=\frac{1}{2}$). We use the fact that if f(t) is continuous and f'(t) exists then f'(t) has at least one zero between consecutive zeros of f(t).

(A) Assume that $P_{2k-1}(t)$ has no zero other than $t = \frac{1}{2}$ in 0 < t < 1. Now $P_{2k-1}(t) \not\equiv 0$ and is anti-symmetric about $t = \frac{1}{2}$. Hence either $P_{2k-1}(t)$ is positive in $0 < t < \frac{1}{2}$ and negative in $\frac{1}{2} < t < 1$, or vice versa.

Therefore $P'_{2k}(t) = P_{2k-1}(t)$ either steadily increases in $0 < t < \frac{1}{2}$ and steadily decreases in $\frac{1}{2} < t < 1$ or vice versa, and $P'_{2k}(\frac{1}{2}) = 0$.

$$P_{2k}(0) = P_{2k}(1) = 0$$
, therefore $P_{2k}(t)$ has no zeros in $0 < t < 1$ (B)

Also $P_{2k}(t) - c$ has at most two zeros in $0 \le t \le 1$ for any c. In particular $P'_{2k+1}(t) = P_{2k}(t) - \bar{P_{2k}}$ has at most 2 zeros in $0 \le t \le 1$, therefore $P_{2k+1}(t)$ has no zeros in $(0, \frac{1}{2})$ or $(\frac{1}{2}, 1)$.

Therefore $A(k) \Rightarrow A(k+1)$ and B(k).

A(1) is true, hence the result by induction.

N.B. The zeros of $P_3(t)$, $P_5(t)$ · · · at $0, \frac{1}{2}, 1$ are all simple.

The zeros of $P_4(t)$, $P_6(t)$ · · · at 0, 1 are all double.

It can be proved that

$$\frac{he^{ht} - 1}{e^h - 1} = \sum_{n=0}^{\infty} P_n(t)h^n$$

Asymptotic Expansion of $\log \Gamma(z)$

$$\log \Gamma(z) = (z - \frac{1}{2}) \log z - z + \log(2\pi)^{\frac{1}{2}} + \epsilon(z)$$

where
$$\epsilon(z) = -\int_0^\infty \frac{\psi_1(t)}{t+z} dt$$

Where $\psi_1(t)$ (formerly $\phi_1(t)$) is defined by

$$\psi_1(t) = (t - \frac{1}{2}) \qquad (0 \le t \le 1)$$

$$\psi_1(t+1) = \bar{\psi_1}(t) \qquad t \ge 0$$

Where
$$\psi_1(t)$$
 (formerly $\phi_1(t)$) is defined by $\psi_1(t) = (t - \frac{1}{2})$ $(0 \le t \le 1)$ $\psi_1(t+1) = \psi_1(t)$ $t \ge 0$
Let $\psi_n(t) = P_n(t) = \frac{\phi_n(t)}{n!}$ $0 \le t < 1$ $n = 2, 3 \cdots$ $\psi_n(t+1) = \psi_n(t)$ $t \ge 0$
Then $\psi'_{2n}(t) = \psi_{2n-1}(t)$

Then
$$\psi'_{2n}(t) = \psi_{2n-1}(t)$$

$$\psi'_{2n+1}(t) = \psi_{2n}(t) - \bar{P}_{2n}$$

Now
$$\int_0^\infty \frac{\psi_1(t)}{t+z} dt = \int_0^\infty \frac{\psi_2'(t)}{t+z} dt = \left[\frac{\psi_2(t)}{t+z} \right]_0^\infty + \int_0^\infty \frac{\psi_2(t)}{(t+z)^2} dt$$

$$\int_0^\infty \frac{\psi_3'(t) + \bar{P}_2}{(t+z)^2} dt = \frac{\bar{P}_2}{z} + \left[\frac{\psi_3(t)}{(t+z)^2} \right]_0^\infty + 2! \int_0^\infty \frac{\psi_3(t)}{(t+z)^3} dt$$

$$= \frac{\bar{P}_2}{z} + 2! \int_0^\infty \frac{\psi_3(t)}{(t+z)^3} dt$$

$$\int_0^\infty \frac{\psi_1(t)}{t+z} dt = \frac{\bar{P_2}}{z} + 2! \frac{\bar{P_4}}{z^3} + \dots + \frac{(2n-2)! \bar{P_{2n}}}{z^{2n-1}} + (2n)! \int_0^\infty \frac{\psi_{2n+1}(t)}{(t+z)^{2n+1}} dt$$

Therefore
$$\epsilon(z) = -\sum_{r=1}^{n} \frac{(2r-2)!\bar{P}_{2r}}{z^{2r-1}} + R_n(z)$$

$$R_n(z) = -(2n)! \int_0^\infty \frac{\psi_{2n+1}(t)}{(t+z)^{2n+1}} dt$$

$$=-(2n+1)!\int_0^\infty \frac{\psi_{2n+2}(t)}{(t+z)^{2n+2}}dt$$

after one further integration by parts with $\psi_{2n+1}(t) = \psi_{2n+2}(t)$.

Substituting
$$B_n = (-1)^n (2n)! \bar{P}_{2n}$$
 we get
$$\epsilon(z) = \sum_{n=1}^m \frac{(-1)^{n-1} B_n}{(2n-1)^{2n}} \frac{1}{z^{2n-1}} + R_m(z)$$

Magnitude of $R_n(z)$

First note that $\psi_2(t) \leq 0$, $\psi_2(t) \leq 0$ etc.

Let z = x, real and positive. In this case $R_0(x) > 0$, $R_1(x) < 0$ etc. i.e. the $R_n(x)$ are alternately positive and negative. Hence $\epsilon(x)$ lies between the sums to n and n+1 terms of the series $\frac{B_1}{1.2} \frac{1}{x} - \frac{B_2}{3.4} \frac{1}{x^3} + \cdots$

$$\frac{B_1}{1.2} \frac{1}{x} - \frac{B_2}{3.4} \frac{1}{x^3} + \cdots$$

and $R_n(x)$ is numerically less than the term $\frac{(-1)^n B_{n+1}}{(2n+1)(2n+2)} \frac{1}{x^{2n+1}}$

In particular
$$\lim_{x \to \infty} x^{2n-1} R_n(x) = 0$$
 (*n* fixed) (1)

In fact
$$\lim_{x \to \infty} x^{2n+1} R_n(x)$$
 exists and $= \frac{(-1)^n B_{n+1}}{(2n+1)(2n+2)}$ (2)

The property (1) characterises the asymptotic nature of the series $\frac{B_1}{1.9} \frac{1}{r} - \cdots$

Divergence of the series

The above series taken to ∞ is divergent for all x. i.e. $\lim_{n\to\infty} R_n(x)$ does not exist.

This follows the result (here quoted but not proved) that

This follows the result (here
$$(-1)^n \bar{P}_{2n} = \frac{B_n}{(2n)!} = \frac{2S_{2n}}{(2\pi)^{2n}}$$

$$\frac{B_n}{(2n)!} \sim \frac{2}{(2\pi)^{2n}}$$

$$\frac{B_n}{(2n)!} \sim \frac{2}{(2\pi)^{2n}}$$

In that case the nth term of the series is
$$(-1)^n (2n-2)! \frac{2S_{2n}}{(2\pi)^{2n}} \frac{1}{z^{2n-1}} \sim \frac{2(-1)^n}{2\pi} \frac{(2n-2)!}{(2\pi z)^{2n-1}}$$

And
$$\sum_{n=1}^{\infty} \frac{(-1)^n (2n-2)!}{z^{2n-1}}$$
 diverges for all z.

Hence the result.
We write
$$\epsilon(z) = \frac{B_1}{1.2} \frac{1}{z} - \frac{B_2}{3.4} \frac{1}{z^3} + \cdots$$
 and

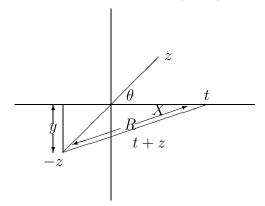
$$\log \Gamma(z) \sim \left(z - \frac{1}{2}\right) \log z - z + \log(2\pi) \frac{1}{2} + \frac{B_1}{1.2} \frac{1}{z} - \frac{B_2}{3.4} \frac{1}{z^3} + \cdots$$

Behaviour of $R_n(z) - z$ complex -as $z \to \infty$

We have
$$R_n(z) = -(2n+1)! \int_0^\infty \frac{\psi_{2n+2}(t)}{(t+z)^{2n+2}} dt$$

We suppose as before that $|\arg z| \leq \pi - \delta$, $(0 < \delta < \pi)$ necessary for the existence of $R_n(z)$.

a) when x = Re(z) > 0 $|t + z| \ge t + x$ for all $t \ge 0$ and hence $|R_n(z)| \le (2n + 1)! \int_0^\infty \frac{|\psi_{2n+2}(t)|}{(t+x)^{2n+2}} dt$



Either
$$\psi_{2n+2}(t) \le 0$$
 $n = 0, 2, 4, \cdots$
or $\psi_{2n+2}(t) \ge 0$ $n = 1, 3, 5, \cdots$
 $|R_n(z)| \le |R_n(x)|$

If m_n is the upper bound of $|\psi_{2n}(t)|$

$$|R_n(z)| \le \frac{(2n+1)!m_{n+2}}{(2n+1)x^{2n+1}} = \frac{K_n}{x^{2n+1}} = \frac{K_n \sec^{2n+1}\theta}{|z|^{2n+1}}$$

Hence $|R_n(z)| = O(|z|^{-(2n+1)})$ $|\arg z| < \frac{\pi}{2}$

b) when $|\arg z| \le \pi - \delta$ $|R_n(z)| \le (2n+1)! \int_0^\infty \frac{|\psi_{2n+2}(t)|}{|t+z|^{2n+2}} dt$ $|t+z| = y \csc X$ $t = y \cot X - x$ $|R_n(z)| \le (2n+1)! \int_0^\pi \frac{|\psi_{2n+2}(t)| y \csc^2 X dX}{y^{2n+2} \csc^{2n+2} X}$ $\le \frac{(2n+1)! m_{n+2}}{y^{2n+1}} \int_0^\pi \sin^{2n} X dX$ $= \frac{K'_n}{y^{2n+1}} = \frac{K'_n \csc^{2n+1} \theta}{|z|^{2n+1}}$

$$\leq \frac{K_n' \csc^{2n+1} \delta}{|z|^{2n+1}} \qquad |\theta| \leq \pi - \delta$$
$$|R_n(z)| = O(z^{-(2n+1)})$$