Exam Question

Topic: Tangent Plane

Write down the formula for the directional derivative in the direction θ at a point P on the surface given by the equation $z=f(x, y)$.
Prove that the direction of maximum slope and the direction of zero slope are always at right angles.
Find the equation of the tangent plane at the point $(1,2,-5)$ to the surface given by the equation

$$
z=x y^{3}-3(x+y)
$$

Solution

The directional derivative is given by

$$
D(\theta)=f_{x} \cos \theta+f_{y} \sin \theta
$$

where f_{x} and f_{y} are evaluated at P.
The direction of zero slope is given by $\tan \theta=-f_{x} / f_{y}$.
Now $D^{\prime}(\theta)=f_{x} \sin \theta+f_{y} \cos \theta$ and so $D^{\prime}(\theta)=0$ when $\tan \theta=f_{y} / f_{x}$.
The product of these two directions is -1 and so they are at right-angles.

$$
\begin{aligned}
z & =x y^{2}-3(x+y) \\
z_{x} & =y^{2}-3=2^{2}-3=1 \text { at } P \\
z_{y} & =2 x y-3=2.1 .2-3=1 \text { at } P
\end{aligned}
$$

The equation of the tangent plane is therefore

$$
z+5=1(x-1)+1(y-2) ; \quad x+y-z=8 .
$$

