Exam Question

Topic: Tangent Plane
Find an equation for the plane which is tangent to the surface whose equation is $z=x^{2} y^{3}-3\left(x+y^{2}\right)$ at the point $P(1,-1,7)$.
Express the equation in the form $a x+b y+c z=d$, where a, b, c, d are constants the line L is a horizontal tangent line (parallel to the $x-y$ plane) to the surface at the point $P(1,-1,7)$.
Find the angle which L makes with the x-direction
Express your answer in radians correct to 3 decimal places using your calculator.

Solution

$z=f(x, y)=x^{2} y^{3}-3\left(x+y^{2}\right)$
$f_{x}=2 x y^{3}-3 ; \quad f_{x}(1,-1)=-5$.
$f_{y}=3 x^{2} y^{2}-6 y ; \quad f_{y}(1,-1)=9$.
The equation of the tangent plane is therefore
$z+7=-5(x-1)+9(y+1) ; \quad z+7=-5 x+5+9 y+9 ; \quad 5 x-9 y+z=7$. the directional derivative at P in direction θ is given by

$$
D(\theta)=-5 \cos \theta+9 \sin \theta .
$$

This is zero when $\tan \theta=5 / 9 ; \quad \theta=0.507$ radians (3 d.p.)

