Question

Given that

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

and B is such that $A B=B A$, show that B must have the form

$$
\left(\begin{array}{ccc}
a & b & c \\
b & a+c & b \\
c & b & a
\end{array}\right)
$$

where a, b and c are arbitrary. (HINT: Let

$$
B=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & g & i
\end{array}\right)
$$

and calculate both $A B$ and $B A$. Compaire the entries in these two matricies to show that $d=f=h=b$ etc...)

Answer

$$
\begin{aligned}
& A B=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=\left(\begin{array}{ccc}
d & e & f \\
a+g & b+h & c+i \\
d & e & f
\end{array}\right) \\
& B A=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
b & a+c & b \\
e & d+f & e \\
h & g+i & h
\end{array}\right) \\
& \text { and so } d=h=f=b .
\end{aligned}
$$

Also: $e=a+c=g+i=a+g=c+i$ when

$$
\begin{array}{rll}
a+c=c+i & \Longrightarrow & a=i \\
a+c=a+g & \Longrightarrow c=g
\end{array}
$$

Therefore, d, e, f, g, h and i are uniquely determined by a choice of a, b and c. Hence B must have the form:

$$
B=\left(\begin{array}{ccc}
a & b & c \\
b & a+c & b \\
c & b & a
\end{array}\right) .
$$

