Question

A crystal lattice is generated by the vectors $\mathbf{a}_{1}=3 \mathbf{i}, \mathbf{a}_{2}=\mathbf{i}+2 \mathbf{j}, \mathbf{a}_{3}=$ $\mathbf{i}+\mathbf{j}+\mathbf{k}$, based at the origin. A general point \mathbf{x} of the lattice can be expressed as

$$
\mathbf{x}=r \mathbf{a}_{1}+s \mathbf{a}_{2}+t \mathbf{a}_{3}
$$

where r, s and t are scalars. Write down the matrix which allows one to convert these " \mathbf{a}_{i}-coordinates" into standard "i, \mathbf{j}, \mathbf{k} coordinates", and use it to convert the following vectors into standard form:
(i) $\mathbf{u}=3 \mathbf{a}_{1}+2 \mathbf{a}_{2}+4 \mathbf{a}_{3}$
(ii) $\mathbf{v}=2 \mathbf{a}_{1}-4 \mathbf{a}_{2}+5 \mathbf{a}_{3}$
(iii) $\mathbf{w}=-3 \mathbf{a}_{1}-2 \mathbf{a}_{2}+4 \mathbf{a}_{3}$

Do the vectors \mathbf{u}, \mathbf{v} and \mathbf{w} lie on a common plane through the origin?
Answer
The matrix is $\left(\begin{array}{lll}3 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1\end{array}\right)$, so that a point of the lattice with \mathbf{a}_{i}-coordinates (r, s, t) has \mathbf{i}, \mathbf{j}, k-coordinates (x, y, z) where:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
3 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
r \\
s \\
t
\end{array}\right)
$$

(i)

$$
\mathbf{u}=\left(\begin{array}{ccc}
3 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
3 \\
2 \\
-4
\end{array}\right)=\left(\begin{array}{c}
7 \\
0 \\
-4
\end{array}\right) \text { so } \mathbf{u}=7 \mathbf{i}-4 \mathbf{k}
$$

(ii)

$$
\mathbf{v}=\left(\begin{array}{lll}
3 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
2 \\
-4 \\
5
\end{array}\right)=\left(\begin{array}{c}
7 \\
-3 \\
5
\end{array}\right) \text { so } \mathbf{v}=7 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k}
$$

(iii)

$$
\mathbf{w}=\left(\begin{array}{lll}
3 & 1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
-3 \\
-2 \\
4
\end{array}\right)=\left(\begin{array}{c}
-7 \\
0 \\
4
\end{array}\right) \text { so } \mathbf{w}=-7 \mathbf{i}+4 \mathbf{k}
$$

Note that $\mathbf{u}=-\mathbf{w}$ so that \mathbf{u} and \mathbf{w} are parallel vectors. Hence \mathbf{u} and \mathbf{w} lie on a common line through the origin, and so \mathbf{u}, \mathbf{v} and \mathbf{w} lie on a common plane through the origin.

