Question

Let

$$
T(z)=\frac{a z+b}{c z+d} \quad a, b, c, d, \in \mathbf{R}, \quad a d-b c=1
$$

be a real Mobius transformation. Show that T maps the upper half plane to itself. Prove that the hyperbolic arc-length defined by

$$
d s=\frac{|d z|}{y} \quad(z=x+i y)
$$

is invariant under all real Mobius transformations.
Show that $6+4 i$ and $7+3 i$ are at the same Euclidean distance from the point 3 , and hence determine the hyperbolic line which passes through $6+4 i$ and $7+3 i$. By finding a Mobius transformation which maps this hyperbolic line to the imaginary axis compute the hyperbolic distance from $6+4 i$ to $7+3 i$.

Answer

1st bit only in this years course
T maps the real axis to the real axis
$\operatorname{im} T(i)=\operatorname{im} \frac{a i+b}{c i+d}=\operatorname{im} \frac{(a i+b)(-c i+d)}{c^{2}+d^{2}}=\frac{a d-b c}{c^{2}+d^{2}}>0$

