Question

Define the logarithm of a non-zero complex number and discuss its multivalued nature. If $a, b \in \mathbf{C}$ and $a \neq 0$ define a^{b}. Show that a^{i} has infinitely many values.
Show how z^{i} changes its value by choosing a particular value w_{0} of z_{0}^{i} and then passing once around the circle with centre o and radius $\left|z_{0}\right|$. Explain how you would define a single-valued branch $f(z)$ of z^{i} which gives an analytic function in the upper half plane U. If $r=|z|, \theta=\arg z$ calculate for the particular branch you have chosen, $\left|z^{i}\right|$ and $\arg z^{i}$.
Find the image $f(u)$ of the upper half plane under f. Also, find the images of the following subsets of U.
i) $\left\{z \in U\left||z|=r_{1}\right\}\right.$
ii) $\left\{z \in U \mid \arg z=\theta_{1}\right\}$.

Answer

If $z=e^{w}$ then we say that w is a logarithm of z. Now e^{w} is periodic with period $2 \pi i$, so $z=e^{w+2 n \pi i}$, and $w \neq 2 n \pi i$ is also a logarithm of z, for $n \in \mathbf{Z}$. Now let $w=x+i y$ so $z=e^{x} e^{i y}$ thus $e^{x}=|z|$ and $y=\arg z$.
So $w=\ln |z|+i \arg z$, and again the multi-valued nature is clear from that of $\arg z$.
We define a^{b} by $a^{b}=\exp (b \log a)$
So $a^{i}=\exp (i \log a)=\exp (i[\log |a|+i(\operatorname{Arg} a+2 n \pi)])$
$=\exp i \ln |a| \exp (-\operatorname{Arg} a) \exp (-2 n \pi) \quad n \in \mathbf{Z}$
The first two factors are uniquely defined and non-zero. The third factor is different for each $n \in \mathbf{Z}$.
Let z pass round the circle centre O, radius $\left|z_{0}\right|$. Choosing the value of z^{i} with $n=0$ we have
$z^{i}=\exp \left(i \ln \left|z_{0}\right|\right) \exp (-\operatorname{Arg} z)=K \exp (-\operatorname{Arg} z)$
so with the principal value of $\operatorname{Arg} z$ satisfying $-\pi \leq \operatorname{Arg} z<\pi, z^{i}$ changes as follows:
when $z=-\left|z_{0}\right|$, i.e. $\operatorname{Arg} z=-\pi, z^{i}=K e^{\pi}$ as z moves round the circle $\operatorname{Arg} z$ increases and so z^{i} assumes values of the form $K e^{-\pi t} \quad-1 \leq t<1$.
As $\operatorname{Arg} z \rightarrow \pi, \quad z^{i} \rightarrow K e^{-\pi}$, so there is a discontinuity at $-\left|z_{0}\right|$ of magnitude $K\left(e^{\pi}-e^{-\pi}\right)$. To choose a single-valued branch analytic for imz>0 the above will do.

So if $r=|z|$ and $\theta=\operatorname{Arg} z$ then $z^{i}=\exp (i \log r) \exp (-\theta)$
So $\left|z^{i}\right|=e^{-} \theta, \quad \arg \left(z^{i}\right)=\log r$
If U is the upper half plane, $0<\theta<\pi$ and $r>0$, so $\log r$ takes all real values and $e^{-\theta}$ takes values between 1 and $e^{-\pi}$. So the image of U is the open annulus $e^{-\pi}<|w|<1$.
i) $\left\{z \in U\left||z|=r_{1}\right\}\right.$ - the subset of this annulus satisfying $\arg w=\log r_{1}$. i.e. a line segment.
ii) $\left\{z \in U \mid \arg z=\theta_{1}\right\}$. - a circle of radius $e^{-\theta}$.

DIAGRAM

