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i) Evaluate / m by contour integration.
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ii) Prove that if R is a positive real number then
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all tend to 0 as R — oo, where in each case the integral is taken over
a straight line. Hence prove that
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Answer
1
i) Let f(z) = EFw This is analytic except for poles of order 2 at
z = £2i.
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Forallz ————= < — and / —, converges.
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So by comparison / 7(11’ converges.
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We integrate f(z) round the contour I
DIAGRAM
For R > 2 there is a pole of order 2 at z = 2 inside I'.
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On Cy |f(2)| = < = for R > 2.
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and again / — 0 as R — oo, as with
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Now z— = ¢ — 1 as z — 0 so — has a simple pole at z = 0 with
z z
residue 1.
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So — = — 4 g(z) where g(z) is analytic near 0.
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So dK, M such that |g(z)| < M for |z| < K.

Thus for the small semi-circle C, z = —re™® 0<t<nr
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Inside I', — is analytic. Hence / — — 0.
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So letting R — oo, r — 0 gives
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