Question

- i) Evaluate $\int_{-\infty}^{\infty} \frac{dx}{(x^2+4)^2}$ by contour integration.
- ii) Prove that if R is a positive real number then

$$\int_{R}^{R+iR} \frac{e^{iz}dz}{z}, \qquad \int_{-R+iR}^{R+iR} \frac{e^{iz}dz}{z} \quad \text{and} \quad \int_{-R}^{-R+iR} \frac{e^{iz}dz}{z}$$

all tend to 0 as $R \to \infty$, where in each case the integral is taken over a straight line. Hence prove that

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}.$$

Answer

i) Let $f(z) = \frac{1}{(z^2 + 4)^2}$. This is analytic except for poles of order 2 at $z = \pm 2i$.

For all
$$x - \frac{1}{(x^2 + 4)^2} \le \frac{1}{x^4}$$
 and $\int_{-\infty}^{\infty} \frac{1}{x^4}$ converges.

So by comparison
$$\int_{-\infty}^{\infty} \frac{1}{(x^2+4)} dx$$
 converges.

We integrate f(z) round the contour Γ .

DIAGRAM

For R > 2 there is a pole of order 2 at z = 2i inside Γ .

$$\operatorname{res}(f,2i) = \frac{d}{dz}(z-2i)^2 f(z) \Big|_{z=2i}$$

$$= \frac{d}{dz} \frac{1}{(z+2i)^2} = \frac{-2}{(z+2i)^3} \Big|_{z=2i} = \frac{-i}{32}$$

$$\int_{\Gamma} f(z) dz = 2\pi i \frac{(-1)}{32} = \frac{\pi}{16}$$
On C_2 $|f(z)| = \frac{1}{|z^2+4|^2} \le \frac{1}{(|z|^2-4)^2} = \frac{1}{(R^2-4)^2}$ for $R \ge 2$.

So
$$\left| \int_{C_2} f(z) dz \right| \le \frac{\pi R}{R^2 - 4} \to 0 \text{ as } R \to \infty$$

 $\int_{\Gamma} = \int_{-R}^{R} + \int_{C_2} \text{ so letting } R \to \infty \text{ gives } \int_{-\infty}^{\infty} \frac{dx}{(x^2 + 4)^2} = \frac{\pi}{16}$

ii) DIAGRAM

On
$$C_1$$
 $\left| \frac{e^{iz}}{z} \right| = \frac{\left| e^{i(R+it)} \right|}{|z|} \le \frac{e^{-t}}{R}$

So $\left| \int_{C_1} \frac{e^{iz}}{z} dz \right| \le \int_0^R \frac{e^{-t}}{R} dt = \frac{1 - e^{-R}}{R} \to 0 \text{ as } R \to \infty$

On C_2 $\left| \frac{e^{iz}}{z} \right| = \frac{\left| e^{i(t+iR)} \right|}{|z|} = \frac{e^{-R}}{|z|} \le \frac{e^{-R}}{R}$

So $\left| \int_{C_2} \frac{e^{iz}}{z} dz \right| \le \frac{e^{-R}}{R} 2R \to 0 \text{ as } R \to \infty$

On C_3 $\left| \frac{e^{iz}}{z} \right| = \frac{\left| e^{i(-R+it)} \right|}{|z|} \le \frac{e^{-t}}{R}$

and again $\int_{C_3} \to 0$ as $R \to \infty$, as with \int_{C_1}

Now $z \frac{e^{iz}}{z} = e^{iz} \to 1$ as $z \to 0$ so $\frac{e^{iz}}{z}$ has a simple pole at z = 0 with residue 1.

So $\frac{e^{iz}}{z} = \frac{1}{z} + g(z)$ where g(z) is analytic near 0.

So $\exists K$, M such that $|g(z)| \leq M$ for $|z| \leq K$.

Thus for the small semi-circle $C, z = -re^{-it}$ $0 \le t \le \pi$ $r \le K$

$$\int_C \frac{e^{iz}}{z} = \int_C \frac{1}{z} dz + \int_C g(z) dz$$

Now
$$\left| \int_C g(z) dz \right| \le M\pi r \to 0$$
 as $r \to 0$

and
$$\int_C \frac{1}{z} dz = \int_0^{\pi} \frac{ire^{-it}}{-re^{-it}} = -\pi i$$

Inside Γ , $\frac{e^{iz}}{z}$ is analytic. Hence $\int_{\Gamma} \frac{e^{it}}{z} \to 0$.

So letting $R \to \infty$, $r \to 0$ gives

$$\int_{-\infty}^{0} \frac{e^{ix}}{x} dx + \int_{0}^{\infty} \frac{e^{ix}}{x} dx - \pi i = 0$$
So
$$\int_{-\infty}^{\infty} \frac{\sin x}{x} = \pi$$
 i.e.
$$\int_{0}^{\infty} \frac{\sin x}{x} = \frac{\pi}{2}$$