
Vector Algebra and Geometry

Differentiation of Vectors

Vector - valued functions of a real variable
We have met the equation of a straight line in the form

r = a+ tb

r therefore varies with the real variables t; corresponding to each value of t
we have a different vector r is a function of t.
r need not be a position vector. For example if we have a curvemR2x = x(t),
y = y(t), r(t) could denote the unit vector in the direction of the tangent
to the curve at the point t. r would again vary as t varies. Vector field
exs. magnetic field velocity field etc. In three dimensions if we have a vector
function a(t) then we can express it in terms of its components, a(t) =
a1(t)i + a2(t) + a3(t)k in cartesian. = a1(t), a2(t), a3(t) are now function:
R→ R
By analogy with functions R→ R we investigate differentiability of a vector
functiona(t) by investigating the quotient

a(t+ h)− a(t)
h

If this vector has a limit as h→ 0we say that a is differentiable at t

a(t+ h)− a(t)
h

=
a1(t+ h)− a1(t)

h
i+
a2(t+ h)− a2(t)

h
j+

a3(t+ h)− a3(t)

h
k

If each of the components has a limit as does LHS conversely if LHS has a
limit, then taking the scalar product in turn with i, j, k proves that each
components has a limit.
Thus a(t) is differentiable if and only if its components are differentiable, and

da

dt
=
da1

dt
i+

da2

dt
j+

da3

dt
k

Rules for differentiation

1. If λ, µ are constants then

d

dt
(λa(t) + µb(t)) = λ

da

dt
+ µ

db

dt
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2. If φ(t) is a function R→ R then

d

dt
(φ(t)a(t)) = φ

da

dt
+
dφ

dt
a

3.
d

dt
(a(t) · bt) = a · dbfb

dt
+
da

dt
· b

4.
d

dt
(a(t)× bt) = a(t)× dbfb

dt
+
da

dt
× b

5. if t = t(u)
d

du
(a(t)) =

dt

du
· da
dt

Since
da

dt
is also a vector function we can define its derivative

d2a

dt2
etc.

The proof of one of these results will be given as an example. To differentiate
a(t)× b(t)
a(t+ h)× b(t+ h)− a(t)× b(t)

δt

=
a(t+ h)× (b(t+ h)− b(t))

δt
+

(a(t+ h)− a(t))

δt
× b(t)

→ a(t)× db

dt
+
da

dt
× b(t) as h→ 0

Example

Find
d

dt
|a(t)|, d

dt
|a(t)|2

We do the second one first, for:
|a(t)|2 = a(t) · a(t)
So

d

dt
|a(t)|2 = a · da

dt
+
da

dt
· a = 2a · da

dt
Now |a| = (a · a) 1

2

So
d

dt
(a · a) 1

2 =
1

2
(a · a)− 1

2

d

dt
(a · a) = a · da

dt

|a| = â · da
dt

Notice that if |a|=constant this implies
d

dt
|a| = 0 but not

da

dt
= 0

For â · da
dt

= 0 implies
da

dt
= 0 OR

da

dt
is perpendicular to â

i.e.
da

dt
is perpendicular to a if a is a vector of constant magnitude (e.g. a

variable unit vector)
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Geometrical Interpretation
Let r = r(t) be the position vector of a point on a curve in space described
by means of the parameter t

PICTURE

~PP ′ = r(t+ δt)− r(t)
As δt→ 0. The direction of ~PP ′ tends towards that of the tangent vector at
P .

dr

dt
= lim

h→0

~PP ′

δt

so if this limit is nonzero then it is a vector whose direction is that of the
tangent.
Now suppose that the parameter is s, the length of arc from one point A on
the curve.

PICTURE

The length of are PP ′ is approximately the same as the length of the chord
PP ′

So | ~PP ′| ≈ δs

Thus

∣

∣

∣

∣

∣

r(s+ δs)− r(s)
δs

∣

∣

∣

∣

∣

≈ 1

Thus as δs→ 0 we have
dr

ds
= unit tangent vector at P .

Example
Consider the curve x = a cos t y = a sin t

PICTURE

Measure are length from A, s= arc AP = at so t =
s

a
So in terms of the parameter s,
~OP = r(s) = a cos

s

a
i+ a sin

s

a
j

So
dr

ds
= − sin

s

a
i+ cos

s

a
j

Thus

∣

∣

∣

∣

∣

dr

ds

∣

∣

∣

∣

∣

= 1
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Also

dr

ds
= cos

(

π

2
+
s

a

)

i+ sin
(

π

2
+
s

a

)

j

= cos
(

π

2
+ t

)

i+ sin
(

π

2
+ t

)

j

Thus
dr

ds
is a unit vector obtained from r by rotating r through 90◦. i.e. it

is a unit vector in the direction of the tangent.
Since r(t) = a cos ti+ a cos tj
dr

dt
= −a sin ti+ a cos tj so

∣

∣

∣

∣

∣

dr

dt

∣

∣

∣

∣

∣

= a

However consider
r(t) = a cos(t2)i+ a sin(t2)j - still on circle |r(t)| = a but
dr

dt
= −2at sin(t2)i+ 2at cos(t2)j

So
dr

dt
6=constant, neither is

∣

∣

∣

∣

∣

dr

dt

∣

∣

∣

∣

∣

is a constant. In fact when t = 0,
dr

dt
= 0

Example in R3

Let r(t) = a cos ti+ a sin tj+ btk
This represents a helix of radius a and pitch 2πb

PICTURE

dr

dt
= −a sin ti+ a cos tj+ bk

So
dr

dt
· k = b−constant.

Thus the tangent vector makes a constant angle with the vertical.

Physical Interpretation
If we now consider t as a time parameter, and r(t) representing the position
of a particle at time t than over a small interval of time, with the particle
moving roughly in a straight line, the quotient

|r(t+ δt)− r(t)|
δt

≈ distance traveled

time taken

measures the average speed of the particle over the time interval from t to
t+ δt. We then define

dr

dt
= lim

δt→0

r(t+ δt)− r(t)
δt
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to be the instantaneous velocity at time t, when r(t) is differentiable. Notice
that this nay not always exist, as when an impulse is applied, giving an
instantaneous change in speed and / or direction.

It is the relationship between velocity and derivative which enabled New-
ton to solve so many dynamical problems when he invented the differential
calculus.
In dealing with velocities there is a traditional notation, stemming from
Newton.

We use ṙ to stand for
dr

dt
The derivative of velocity is called acceleration, r̈. Another traditional nota-
tion is to use r for |r| (as it is easier to read in books)

Notice the distance between ṙ =
dr

dt
and ṙ =

d|r|
dt

Example: Motion in a circle
Suppose a particle is moving round a circle, radius a, with a uniform speed,
and it takes k seconds to perform one revolution. So in k seconds it travels
and are of 2πa. In t seconds it therefore travles an are of 2πa

k
t. We would

expect its speed to be 2πa
k
.

PICTURE

At time t

Arc AP = aθ =
2πa

k
t

So θ =
2π

k
t

Thus r(t) = a cos
2π

k
ti+ b sin

2π

k
tj

So

ṙ = −2πa

k
sin

2π

k
ti+

2πa

k
cos

2π

k
tj

=
2πa

k

(

cos
(

θ +
π

2

)

i+ sin
(

θ +
π

2

)

j
)

We see therefore that |ṙ| = 2πa

k
=constant = v

(v is a letter often used for speed)
and the direction of ṙ is that the tangent at P .

r̈ = −4π2a

k2
cos

2π

k
ti− 4π2a

k
sin

2π

k
tj

=
(

2πa

k

)2

· 1
a
(− cos θi− sin θj)
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so the magnitude |r̈| = v2

a
and the direction of r̈ is towards the centre from

P .

r̈ = −v
2

a
r̂

Rotating unit vectors
We have already seen that if a(t) is a vector with |a| constant then a is

perpendicular
da

dt
. I now want to analyse this situation a bit further.

Let û(t) be a unit vector.
Fix an origin O and let û(t) be the position vector od a point relative to O.

³³
³³

³³
³³B
B
B
B

¡
¡
¡
¡
¡
¡

B
BM

³³
³³

³³1

O X

δθ
θ

û
P

P ′

û+ δû

Let XÔP = θ the angle measured relative to some initial line OX through
O.
Then ~PP ′ = ~OP ′ − ~OP = δû

So
δû

δt
=

~PP ′

δt
Since | ~OP | = | ~OP ′| = 1

So
| ~PP ′|
δt

=
2 sin 1

2
δθ

δt
=

sin 1

2
δθ

1

2
δθ

· δθ
δt

Thus if p̂(t) is the vector perpendicular to û(t) in the direction of θ increasing
we have

dû

dt
=
dθ

dt
p̂ or ˙̂u = θ̇p̂

Radial and transverse components velocity and acceleration
Suppose a particle P is moving in some path, described in polar co-ordinates,
so that the co-ordinates of P at time t are (r(t), θ(t))
At the point P we wish to consider the components of velocity and acceler-
ation in the direction of the unit vectors r̂ and θ̂

PICTURE
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Notice that as P moves along the curve the directions of r̂ and θ̂ change.
They are rotating unit vectors.
Now r = ~OP = rr̂ (remember r = |r|)
So the velocity is given by:

dr

dt
=
dr

dt
r̂ + r

dr̂

dt
= ṙr̂ + rθ̇θ̂

So the radial component of velocity is ṙ and the transverse component is rθ̇
To find the acceleration we differentiate again

r̈ = r̈r̂ + ṙ
dr̂

dt
+ ṙθ̇θ̂ + rθ̈θ̂ + rθ̇

dθ̂

dt

= r̈r̂ + ṙθ̇θ̂ + ṙθ̇θ̂ + rθ̈θ̂ − rθ̇ · θ̇r̂
= (r̈ − r(θ̇)2)r̂ + (2ṙθ̇ + rθ̈)θ̂

So the radial component acceleration is r̈− rθ̇2 The transverse component of

acceleration is 2ṙθ̇ + rθ̈ =
1

r

d

dt
(r2θ̇)

Angular velocity
θ̇ defines the angular speed of a particle. Suppose a particle is moving in a
circle centre O, so that r is constant.

Then
dr

dt
= rθ̇θ̂

Let n̂ = r̂ × θ̂ and let ω = θ̇n̂

Then

ω × r = rθ̇(r̂× θ̂)× r̂

= rθ̇((r̂ · r̂)θ̂ − (r̂ · θ̂)r̂)
= rθ̇θ̂

So
dr

dt
= ω × r

ω is called the angular velocity vector.
In general if r os not constant

dr

dt
= ṙr̂ + rθ̇θ̂ = ṙr̂ + ω × r

Example
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A particle moves along the equiangular spiral r = eθ with constant angular
velocity about the origin. Prove that the acceleration is at right angles to
the radius vector and proportional to its length.
ω = θ̇n̂ is constant. So θ̇ is constant.
r = eθ so ṙ = eθθ̇ = rθ̇

r̈ = ṙθ̇ = r(θ̇)2

So the acceleration is given by

r̈ = (r̈ − r(θ̇)2)r̂ + (2ṙθ̇ + rθ̈θ̂)

= (rθ̇2 − rθ̇2)r̂ + 2rθ̇2θ̂

= 2r(θ̇)2θ̂

So r̈ is perpendicular r̂ and |r̈| = r(θ̇)2 or r as θ̇ is constant.

Tangential and normal components of velocity and acceleration
PICTURE

s is the path length measured from a fixed point on the curve

v =
dr

dt
=
dr

ds

ds

dt
= ṡt̂

(

dr

ds
= t̂ already established

)

= vt̂ (v is speed)

It makes physical sense to say that the velocity is the rate at which the
particle is traveling along the path, and that the direction of travel at any
instance is equal to the tangential direction at that point.
Differentiating again gives

r̈ = s̈t̂+ ṡ
dt̂

dt

t is a rotating unit vector, that angle of rotation being measured by the angle

φ. So
dt̂

dt
= φ̇n̂

Thus r̈ = s̈t̂+ ṡφ̇n̂

Now φ̇ =
dφ

dt
=
dφ

ds
· ds
dt

dφ

ds
measures how fast the angle φ is changing as we move along the curve. It

gives a measure of how rapidly the curve is turning so we call it the curvature
denoted by κ
Example
Consider a circle
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PICTURE

r = ar̂ = a cos ti+ a sin tj
Measure are length from A. Then s(t) = at.

dψ

ds
=
dψ

dt
· dt
ds

=

(

dφ

dt

)

(

ds

dt

) =
1

a

So curvature =
1

radius

For a general curve we call
ds

dψ
=

1
dψ

ds

the radius of curvature ρ.

So we have ψ̇ =
ṡ

ρ

Thus r̈ = s̈r̂ +
ṡ2

ρ
n̂ or r̈ = s̈t+ ρ(ψ̇)2n̂

It follows immediatly that if a particle is moving at unifrom speed along a
curve, s̈ = 0 and so the acceleration is normal to the curve.
Also if the particle moves so that ψ̇ = constant the the normal component is
proportional to the radius of curvature.

Example
A particle moves on the curve

y = log secx

in such a way that the tangent to the curve at the point where the particle
is rotates at a uniform rate.
i.e. ψ̇ = constant = k.

Now y = log secx = − log cos x and so ẏ = tanxẋ Let r = xi+ yj
So the velocity id given by
ṙ = ẋi+ ẋ tanxj
The speed is therefore

|ṙ| = |ẋ|
√

1 + tan2 x = |ẋ| sec x = v

The unit tangent vector to the path is given by t̂ =
V̇

v
= cos xi+ sinxj

Now
dt̂

dt
= ψ̇n̂

9



So ψ̇ =

∣

∣

∣

∣

∣

dt̂

dt

∣

∣

∣

∣

∣

= | − sinxẋi+ cos xẋj| = |ẋ|
Thus |ẋ| = k so ẋ is a constant.
The acceleration is given by

r̈ = ẋ sec2 xẋj = ẋ2 sec2 xj = v2j

as ẋ is constant.
So the acceleration is in the direction parallel to the y-axis.

Now v = ṡ =
ds

dψ
ψ̇ = ρk

So v2 = k2ρ2

Thus the acceleration is proportional to ρ2

Motion with a rotating frame.
Suppose we have a plane uniformly rotating with respects to a fixed plane
(like a gramophone turntable). Fix a pair of axis in the rotating plane.

PICTURE

so p̂ and q̂are rotating unit vectors, and θ̇ =constant= w

Support a particle is moving around in the rotating plane and that its position
vector at time t is r(t). We find the components of r(t) with respects to p̂
and q̂, so

ṙ(t) = Ṗ (t)p̂+Q(t)q̂

The velocity is given by

ṙ(t) = Ṗ (t)p̂+ P (t)
dp̂

dt
+ Q̇(t)q̂ +Q(t)

dq̂

dt

= Ṗ (t)p̂+ P (t) · ωq̂ + Q̇(t)q̂ +Q(t)(−ωp̂)
= (Ṗ + ωQ)p̂+ (Q̇+ ωP )q̂

It acceleration is then given by

r̈(t) = (P̈ − ωQ̇)p̂+ (Ṗ − ωQ) · ωq̂ + (Q̈+ ωṖ )q̂ − (Q̇+ ωP )ωp̂

= (P̈ − 2ωQ̇ = ω2P )p̂+ (Q̈+ 2ωṖ − ω2Q)q̂

= (P̈ p̂+ Q̈q̂) + 2ω(−Q̇p̂+ Ṗ q̂)− ω2(P p̂+Qq̂)

So this consists of three terms

(i) P̈ p̂+Q̈q̂ if the acceleration of the particle relative to the rotating system.

(ii) 2ω(−Q̇q̂+ Ṗ q̂) is the acceleration of the particle due to its velocity with
in the rotating system
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(iii) −ω2(P p̂ + Qq̂) = −w2r is the acceleration towards the centre due to
the rotation of the system itself.

Special cases

(i) if the system is not rotating so ω = 0 then r̈ = P̈ p̂ + Q̈q̂ - the normal
acceleration.

(ii) If the particle is stationary relative to the rotating system then P and
Q are constant and r̈ = −ω2r - motion in a circle.

Example
An insect crawls outwards along the spoke of a bicycle wheel rotation with
uniform angular velocity ω. The insect crawls with uniform speed u relative
to the spoke.
Let p̂ be the unit vector along the insect’s spoke so Ṗ = u , Q = 0 and Q̇ = 0
Thus the velocity is

ṙ = up̂+ ωP q̂

direction tan−1
ωP

u
to spoke and the acceleration is

r̈ = −ω2P p̂+ 2ωuq̂

direction tan−1

(

−2u

ωp

)

to spoke

PICTURE

Differential Geometry of curves in space
Suppose we have a curve in space described parametrically as

r(t) = x(t)i+ y(t)j+ z(t)k

We have already seen that if
dr

dt
6= 0, then it is parallel to the tangent vector

t̂, and that if the parameter is the arc length s then
dr

ds
= t̂.

(Note: I have used u as the parameter rather then t to avoid confusion with
t̂)

Now since t̂ · t̂ = 0 then
d

ds
(t̂ · t̂) = 0 So t̂ · dt̂

ds
= 0 So

dt̂

ds
is perpendicular to

t.

Then we write
dt̂

ds
= κn̂ with κ > 0.
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The magnitude of
dt̂

ds
(= κ) measures how fast the tangent is turning with

respects to the are length and it is called curvature. n̂ is called the principle
unit normal.

We then choose b̂ so that t̂, n̂, b̂. form a right-handed system at the point
on the curve.
i.e. b̂ = t̂× n̂
b is called the binormal vector
Now

db̂

ds
=

d

ds
(t̂× n̂)

=
dt̂

ds
× n̂+ t̂× dn̂

ds

= t̂× dn̂

ds

So
db̂

ds
is perpendicular to t̂. Also

db̂

ds
is perpendicular to b̂ as b̂ is a unit vector.

Thus
db̂

ds
is parallel to n̂ ( or −n̂). db̂

ds
measures the rate at which b̂ rotates

with respect to are length. It measures the amount of twist or torsion. We
choose the torsion so that it is positive if the rotation about t̂ is right handed
as s increases, and negative if it is left handed. This means that we need to
write

db̂

ds
= −τ n̂

Now n̂ = t̂× t̂ so

dn̂

ds
=

db̂

ds
× t̂+ b̂× dt̂

ds

= −τ n̂× t̂+ b̂× κn̂

= τ ĝ − κt̂

The three formulae we have found

dt̂

ds
= κn̂

db̂

ds
= −τ n̂ dn̂

ds
= τ b̂− κt̂

are known as the Serret-Frenet formulae.

Example
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Consider the helix
r = cos ui+ sin uj+ uk

Clearly from this formula we can calculate derivatives with respect to u. So

to calculate derivatives with respect to s we shall need to know
du

ds
.

dr

du
= − sin ui+ cos uj+ k

The unit tangent vector is
dr

ds

S t̂ =
dr

ds
=

(

dr

du

)

∣

∣

∣

dr
du

∣

∣

∣

=
1√
2
(− sin ui+ cosuj+ k)

But
dr

ds
=
dr

du
· du
ds

So
du

ds
=

1√
2

Now κn̂ =
dt̂

ds
=
dt̂

du
· du
ds

=
1

2
(− cos ui− sinuj)

κ =

∣

∣

∣

∣

∣

dt̂

ds

∣

∣

∣

∣

∣

=
1

2
(same at all points), so n̂ = − cos ui− sinuj

The principle normal is therefore parallel to the i− j plane and the points
are inwards towards the k axis.

Now b̂ = t̂× n̂ =
1√
2
(sinui− cosuj+ k)

and −τ n̂ =
db̂

ds
=
db̂

du
· du
ds

=
1

2
(cosui+ sin j) = −1

2
n̂

So τ =
1

2
- same at all points.

Now
dn̂

ds
=
dn̂

du
· du
ds

=
1√
2
(sinui− cosuj)

τ b̂ = κt̂ =
1

2

1√
2
(sinui− cos uj+ k)− 1

2

1√
2
(− sinui+ cosuj+ k

=
1√
2
(sinui− cos uj)

Which verifies the third Serret Frenet formula in this case.
Now the plane containing the tangent and principle normal at a point (called
the osculating plane) has the binormal as a normal vector.
So for the helix, at the point u, its equations is

(sinu)x− (cos u)y + z = k

k = (sinu) cos u− cos u sin u+ u = u

So the equation is
(sinu)x− (cosu)y + z = u
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e.g. at the point u = π
2
the equations is

x+ z =
1

2
π

The plane containing the tangent and binoraml is called the rectifying
plane and it has n̂ as a normal vector. So for the helix at the point u,
its equations is

(− cos u)x+ (− sin u)y = (− cos u)(cosu) + (− sinu)(sinu) = −1

So the equation is
(cosu)x+ (sin y) = 1

e.g. at the point u = π
2
the equation is

y = 1

The plane containing the normal and binormal is the normal plane, having
t̂ as a normal vector. It equation is

(− sin u)x+ (cos u)y + z = (− sinu)(cos u) + (cos u)(sinu) + u

i.e.
(− sin u)x+ (cos u)y + z = u
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