Assign the least privilege possible

Why? Broad privileges allow malicious or accidental access to
protected resources

Principle Limit privileges to the minimum for the context

Tradeoff Less convenient;less efficient; more complexity

Example Run server processes as their own users with exactly
the set of privileges they require

Implement defence in depth

Systems do get attacked, breaches do happen, mistakes
are made - need to minimise impact

Why?
Principle Don' rely on single point of security, secure every level,
stop failures at one level propagating

Tradeoff Redundancy of policy; complex permissioning and
troubleshooting; can make recovery difficult

Example Access control in Ul services, database, OS

Ul = User Interface

OS = Operating System



Fail securely & use secure defaults

Why? Default passwords, ports & rules are “open doors"”
Failure and restart states often default to “insecure”

Principle Force changes to security sensitive parameters
Think through failures - to be secure but recoverable

Tradeoff Convenience

Example Don'tallow “SYSTEM/MANAGER" after installation
On failure don't disable or reset security controls

Separate responsibilities

Why? Achieve control and accountability, limit the impact of
successful attacks, make attacks less attractive

Principle Separate and compartmentalise responsibilities and
privileges

Tradeoff Development and testing costs; operational complexity:
troubleshooting more difficult

Example ‘“Payments’ module administrators have no access to
or control over “Orders” module features




Economy of Mechanism (Occam’s razor)

Simplest solution possible

Why? Security requires understanding of the design -
complexity rarely understood - simplicity allows analysis

Principle Actively design for simplicity - avoid complex failure
modes, implicit behaviour; unnecessary features, ...

Tradeoff Hard decisions on features and sophistication;
Needs serious design effort to be simple

Example Does the system really need dynamic runtime
configuration via a custom DSL?

DSL = Domain Specific Language

Open Design:

The open design security principle states that the implementation details of the design
should be independent of the design itself, allowing the design to remain open while the
implementation can be kept secret. This is in contrast to security by obscurity where the
security of the software is dependent upon the obscuring of the design itself.

When software is architected using the open design concept, the review of the design
itself will not result in the compromise of the safeguards in the software.

Least Common Mechanism:

The security principle of least common mechanisms disallows the sharing of
mechanisms that are common to more than one user or process if the users or
processes are at different levels of privilege. This is important when defending against
privilege escalation.

Psychological acceptability

A security principle that aims at maximizing the usage and adoption of the security
functionality in the software by ensuring that the security functionality is easy to use
and at the same time transparent to the user. Ease of use and transparency are
essential requirements for this security principle to be effective.



Security controls should not make the resource significantly more difficult to access
than if the security control were not present. If a security control provides too much

friction for the users then they may look for ways to defeat the control and “prop the
doors open”.

Secure by Default

Secure by default means that the default configuration settings are the most secure
settings possible. This is not necessarily the most user-friendly settings. Evaluate what
the settings should be, based on both risk analysis and usability tests. As a result, the
precise meaning is up to you to decide. Nevertheless, configure the system to only
provide the least functionality and to specifically prohibit and/or restrict the use of all
other functions, ports, protocols, and/or services. Also configure the defaults to be as
restrictive as possible, according to best practices, without compromising the
“Psychological acceptability” and “Usability and Manageability” of the system.

‘Older/other’ princlipes......

Trust cautiously

Why? Many security problems caused by inserting malicious

Intermediaries iIn communication paths

Principle Assume unknown entities are untrusted, have a clear
process to establish trust, validate who is connecting

Tradeoff Operational complexity (particularly failure recovery);
reliability; some development overhead

Example Don't accept untrusted RMI connections, use client
certificates, credentials or network controls, scan OSS

RMI = Remote Method Invocation
OSS = Open-Source Software




Why?

Principle

Tradeoff

Example

Audit sensitive events

Provide record of activity, deter wrong doing, provide a
log to reconstruct the past, provide a monitoring point

Record all security significant events in a tamper-
resistant store

Performance; operational complexity; dev cost

Record changes to "core" business entities in an append-
only store with (user, ip, timestamp, entity, event)

Never rely upon obscurity

Why?

Principle

Tradeoff

Example

Hiding things is difficult - someone is going to find
them, accidentally if not on purpose

Assume attacker with perfect knowledge, this forces
secure system design

Designing a truly secure system takes time and effort

Assume an attacker will guess a "port knock" network
request sequence or a password obfuscation technique




Never invent security technology

Why?

Principle

Tradeoff

Example

Security technology is difficult to create - avoiding
vulnerabilities is difficult

Don't create your own security technology - always
use a proven component

Time to assess security technology; effort to learn it;
complexity

Don't invent your own SSO mechanism, secret storage
or crypto libraries ... choose proven components

SSO = Single Sign-On

Find the weakest link

Why!?

Principle

Tradeoff

Example

"Paper Wall" problem - common when focus is on
technologies not threats

Find the weakest link in the security chain and
strengthen it - repeat! (Threat modelling)

Significant effort required; often reveals problems at
the least convenient moment!

Data privacy threat => encrypted communication but
with unencrypted database storage and backups




