
Collections and Iterators
(slides adapted from D. Millard)

Thai Son Hoang

ECS, University of Southampton, U.K.

COMP1202
23th October 2023

Recap
I Looping

I while
I do ... while
I for loop
I for each loop

I Arrays
I Iterating through arrays using for each loop

,
T.S. Hoang 3/36

Objectives
I Arrays vs. ArrayLists

I Declaration
I Insertion
I Access
I Removal

I A Brief Introduction to Generics
I Autoboxing and unboxing

I Iterator objects

Readings
I Chapter 4.10 of Barnes and Kölling [2016]

,
T.S. Hoang 4/36

Outline

Arrays vs. ArrayLists

A Brief Introduction to Generics
Autoboxing and Unboxing

Iterators

Summary

,
T.S. Hoang 5/36

Problems with Arrays
I They don’t change size

I It’s a pain adding new elements
if you don’t know how many are there already

I You have to use indexes

I ArrayIndexOutOfBoundsException

,
T.S. Hoang 6/36

ArrayList to the rescue!
I Arrays are built into the Java language (a bit like primitives)

I But Java also have a library of helpful classes
that you can use for for free

I These are not part of the language,
but are included with every JVM

I ArrayList is one of these library classes

,
T.S. Hoang 7/36

Arrays vs. ArrayLists (1/2)

Arrays
I They don’t change size

I It’s a pain adding new elements if you
don’t know how many are there already

I You have to use indexes

I ArrayIndexOutOfBoundsException

ArrayLists
I Changes size as you add

elements

I ArrayList has an add()
method and takes care of its
size itself

I You can use indexes if you want
(but don’t have to)

I Still thrown by ArrayList. Hey,
it’s a fact of life, okay?

,
T.S. Hoang 8/36

Arrays vs. ArrayLists (2/2)

Arrays
Cat[] catArray;
catArray = new Cat[10];

catArray[0] = moggy1;
catArray[1] = moggy2;

callMethodOn(catArray[1]);

catArray[0] = nul l;

ArrayLists
ArrayList catAList;
catAList = new ArrayList();

catAList.add(moggy1);
catAList.add(moggy2);

callMethodOn(catAList.get(1));

catAList.remove(moggy1);

Declaration

Insertion

Access

Removal

,
T.S. Hoang 9/36

Advantages of ArrayLists
I Arrays are useful for simple small tasks

I ArrayLists are better for more complex tasks
I They grow and shrink when you add and remove things

(arrays are fixed size)
I They have many useful methods ...

I Check out the API:
I Application Programming Interface
I https:

//docs.oracle.com/en/java/javase/17/docs/api/

I type “java api” into google

,
T.S. Hoang 10/36

ArrayList - Method Summary

,
T.S. Hoang 11/36

Example 1 (1/2)

ArrayList numArrayList = new ArrayList();

for (i n t i = 0; i < 9; i++){
numArrayList.add(i);

}
System.out.println("Value at 4 is " +

numArrayList.get(4));

Vevox (140-996-816)?

What number will be printed by the final statement?

,
T.S. Hoang 12/36

https://docs.oracle.com/en/java/javase/17/docs/api/
https://docs.oracle.com/en/java/javase/17/docs/api/

Example 1 (2/2)

ArrayList numArrayList = new ArrayList();

for (i n t i = 0; i < 9; i++){
numArrayList.add(i);

}
System.out.println("Value at 4 is " +

numArrayList.get(4));

Answer
I The loop creates an ArrayList of numbers 0, 1, ..., 8.

I After the loop, the value at index 4 is 4.

,
T.S. Hoang 13/36

Example 2 (1/2)

ArrayList numArrayList = new ArrayList();

for (i n t i = 0; i < 9; i++){
numArrayList.add(10 - i);

}
System.out.println("Value at 4 is " +

numArrayList.get(4));

Vevox (140-996-816)?

What number will be printed by the final statement?

,
T.S. Hoang 14/36

Example 2 (2/2)

ArrayList numArrayList = new ArrayList();

for (i n t i = 0; i < 9; i++){
numArrayList.add(10 - i);

}
System.out.println("Value at 4 is " +

numArrayList.get(4));

Answer
I The loop creates an ArrayList of numbers 10, 9, ..., 2.

I After the loop, the value at index 4 is 6.

,
T.S. Hoang 15/36

Example 3 (1/2)

ArrayList numArrayList = new ArrayList();

for (i n t i = 0; i < 9; i++){
numArrayList.add(10 - i);

}

for (i n t i = 8; i >= 0; i--){
System.out.println("Value is " +

numArrayList.get(i));
}

Vevox (140-996-816)?

What number will be printed by the second loop?

,
T.S. Hoang 16/36

Example 3 (2/2)

ArrayList numArrayList = new ArrayList();

for (i n t i = 0; i < 9; i++){
numArrayList.add(10 - i);

}

for (i n t i = 8; i >= 0; i--){
System.out.println("Value is " +

numArrayList.get(i));
}

Answer
I The loop creates an ArrayList of numbers 10, 9, ..., 2.

I The second loop traverses in the reverse order.

I Hence it produces the sequence 2, 3, ..., 10.

,
T.S. Hoang 17/36

Self-Checked
ArrayList

Blackboard Tests for ArrayList

,
T.S. Hoang 18/36

Outline

Arrays vs. ArrayLists

A Brief Introduction to Generics
Autoboxing and Unboxing

Iterators

Summary

,
T.S. Hoang 19/36

Spot the Problem . . .
ArrayList kennel = new ArrayList();

kennel.add(new Dog("Rover"));
kennel.add(new Dog("Fido"));
kennel.add(new Dog("Patch"));
kennel.add(new Cat("Mr Tiddles"));

for(i n t i = 0; i < kennel.size(); i++) {
kennel.get(i).bark();

}

ArrayLists store objects of
any type

Which means we can mix
up the types of objects in
the ArrayList

Which may cause problems
later if we make assump-
tions about what is in there!

In fact this code will not
compile, because Java
does not know what is in
the ArrayList, and therefore
will not let you call bark on
it

,
T.S. Hoang 20/36

https://blackboard.soton.ac.uk/webapps/blackboard/content/launchAssessment.jsp?course_id=_221896_1&content_id=_6397187_1&mode=view

Solving the Problem . . . (1/2)
ArrayList kennel = new ArrayList();

kennel.add(new Dog("Rover"));
kennel.add(new Dog("Fido"));
kennel.add(new Dog("Patch"));
kennel.add(new Cat("Mr Tiddles"));

for(i n t i = 0; i < kennel.size(); i++) {
i f (kennel.get(i) instanceof Dog) {

Dog d = (Dog) kennel.get(i);
d.bark();

}
}

One option is to test
what is in there using in-
stanceof, and if it’s a
Dog we can tell the com-
piler.
This is called typecast-
ing

Makes my inner soft-
ware engineer cringe!
instanceof is a tool of
last resort. If you’ve
had to use it it probably
means you’re program
is not designed particu-
larly well.

,
T.S. Hoang 21/36

Solving the Problem . . . (2/2)
ArrayList<Dog> kennel = new ArrayList<Dog>();

kennel.add(new Dog("Rover"));
kennel.add(new Dog("Fido"));
kennel.add(new Dog("Patch"));
kennel.add(new Cat("Mr Tiddles"));

for(i n t i = 0; i < kennel.size(); i++) {
kennel.get(i).bark();

}

It would be better if we
could ensure that the Ar-
rayList only contained
Dogs in the first place

This is easily done
because ArrayList uses
a mechanism called
generics.
We can specify the type
allowed when we create
the ArrayList.

Now Java will only allow
us to add things of type
Dog. So this line will
force a compile time er-
ror

,
T.S. Hoang 22/36

A Note About Primitives
ArrayList<Integer> numStore;
numStore = new ArrayList<Integer>();

numStore.add(new Integer(3));
numStore.add(new Integer(5));
numStore.add(new Integer(2));

i n t total = 0;

for(i n t i = 0; i < numStore.size(); i++) {
total = total + numStore.get(i).intValue();

}

System.out.println("Total is " + total);

ArrayLists (and other collec-
tions in the API) can only
store objects.
This means that when you
want to store primitives you
need to use wrapper objects.
This is a pain :-(

,
T.S. Hoang 23/36

A Note About Primitives
ArrayList<Integer> numStore;
numStore = new ArrayList<Integer>();

numStore.add(3);
numStore.add(5);
numStore.add(2);

i n t total = 0;

for(i n t i = 0; i < numStore.size(); i++) {
total = total + numStore.get(i);

}

System.out.println("Total is " + total);

ArrayLists (and other collec-
tions in the API) can only
store objects.
This means that when you
want to store primitives you
need to use wrapper objects.
This is a pain :-(

Java 5 introduced autobox-
ing, a process where primi-
tives are automatically cast to
a wrapper where necessary.

And unboxing, where they
can be cast back again too

,
T.S. Hoang 24/36

Self-Checked
Genericity

Blackboard Tests for Genericity

,
T.S. Hoang 25/36

Outline

Arrays vs. ArrayLists

A Brief Introduction to Generics
Autoboxing and Unboxing

Iterators

Summary

,
T.S. Hoang 26/36

Design Patterns
I In Programming a neat and elegant way of solving a problem is

sometimes called a design pattern

I The Java API uses a number of well-known design patterns

I Including the use of iterators to help you iterate over a collection

,
T.S. Hoang 27/36

Back at the Kennel . . .
ArrayList<Dog> kennel = new ArrayList<Dog>();

kennel.add(new Dog("Rover"));
kennel.add(new Dog("Fido"));
kennel.add(new Dog("Patch"));

for(i n t i = 0; i < kennel.size(); i++) {
kennel.get(i).bark();

}

Iterator<Dog> it = kennel.iterator();

while(it.hasNext()) {
it.next().bark();

}

In our kennel example we
used a for loop to iterate over
the array

We could instead use an iter-
ator object.
Iterators are generic classes
(like the ArrayList) and track
our progress through a col-
lection.
We can use hasNext() to see
if there are more elements
And next() to get the next el-
ement (the iterator will auto-
matically move to the next el-
ement).

,
T.S. Hoang 28/36

https://blackboard.soton.ac.uk/webapps/blackboard/content/launchAssessment.jsp?course_id=_221896_1&content_id=_6397188_1&mode=view

Why are Iterators a useful pattern?
ArrayList<Dog> kennel = new ArrayList<Dog>();

kennel.add(new Dog("Rover"));
kennel.add(new Dog("Fido"));
kennel.add(new Dog("Patch"));

for(i n t i = 0; i < kennel.size(); i++) {
kennel.get(i).bark();

}

Iterator<Dog> it = kennel.iterator();

while(it.hasNext()) {
it.next().bark();

}

1) They are neater, and neat
code is easier to read and un-
derstand

2) They decouple the loop
from the collection (notice
that in the loop we do not ref-
erence the ArrayList at all)
This means we could pass
the iterator to a method – and
that method does not even
need to know what the collec-
tion is!

,
T.S. Hoang 29/36

Why are Iterators a useful pattern?
public void makeThemBark(Iterator<Dog> it) {

while (it.hasNext()) {
it.next().bark();

}

}

1) They are neater, and neat code is
easier to read and understand

2) They decouple the loop from the
collection (notice that in the loop we do
not reference the Arraylist at all)
This means we could pass the iterator
to a method – and that method does
not even need to know what the col-
lection is!

,
T.S. Hoang 30/36

Example 4 (1/2)

ArrayList numArrayList = new ArrayList();

for (i n t i = 0; i < 9; i++){
numArrayList.add(10 - i);

}

Iterator it = numArrayList.iterator();
while (it.hasNext()) {

System.out.println("Value is " + it.next());
}

Vevox (140-996-816)?

What number will be printed by the second loop?

,
T.S. Hoang 31/36

Example 4 (2/2)

ArrayList numArrayList = new ArrayList();

for (i n t i = 0; i < 9; i++){
numArrayList.add(10 - i);

}

Iterator it = numArrayList.iterator();
while (it.hasNext()) {

System.out.println("Value is " + it.next());
}

Answer
I The loop creates an ArrayList of numbers 10, 9, ..., 2.

I The second loop traverses in the array from the beginning.

I Hence it produces the sequence 10, 9, ..., 2.

,
T.S. Hoang 32/36

Self-Checked
Iterators

Blackboard Tests for Iterators

,
T.S. Hoang 33/36

Outline

Arrays vs. ArrayLists

A Brief Introduction to Generics
Autoboxing and Unboxing

Iterators

Summary

,
T.S. Hoang 34/36

Summary
I Arrays vs. ArrayLists

I Declaration
I Insertion
I Access
I Removal

I A Brief Introduction to Generics
I Autoboxing and unboxing

I Iterator objects

,
T.S. Hoang 35/36

YOUR QUESTIONS

https://blackboard.soton.ac.uk/webapps/blackboard/content/launchAssessment.jsp?course_id=_221896_1&content_id=_6397189_1&mode=view

References I

I David J. Barnes and Michael Kölling. Objects First with Java: A
Practical Introduction using BlueJ.
Pearson, sixth edition edition, 2016 (Chapter 4.10)

David J. Barnes and Michael Kölling. Objects First with Java: A
Practical Introduction using BlueJ. Pearson, sixth edition edition,
2016.

,
T.S. Hoang 1/1

	Arrays vs. ArrayLists
	A Brief Introduction to Generics
	Autoboxing and Unboxing

	Iterators
	Summary
	Appendix
	References

