

Query Processing
COMP3211 Advanced Databases

Nicholas Gibbins - nmg@ecs.soton.ac.uk

3

Query Processing

Scanning, parsing and validating

Query Code Generator

Runtime Database Processor

Query Optimiser

Query in a high-level language (DML)

Intermediate form of query

Execution plan

Code to execute the query

Result of query

4

Query Plans
Logical Query Plan

• algebraic representation of query

• operators taken from relational algebra

• abstract!

Physical Query Plan
• algorithms selected for each operator in plan

• execution order specified for operators

5

Query Processing

Scanning, parsing and validating

Query Code Generator

Runtime Database Processor

Query Optimiser

Query in a high-level language (DML)

Intermediate form of query

Execution plan

Code to execute the query

Result of query

query
optimisation

6

Select logical query plan

Query Processing

Parse query

Select physical query plan

Execute plan

Generate logical query plan

Rewrite logical query plan

7

Overview
Logical query plans

• Cost estimation

• Improving logical query plans

• Cost-based plan selection

• Join ordering

Physical query plans
• Physical query plan operators

• One-pass algorithms

• Nested-loop joins

• Two-pass algorithms

• Index-based algorithms

8

Optimisation
A challenge and an opportunity for relational systems

• Optimisation must be carried out to achieve performance

• Because queries are expressed at such a high semantic level, it is possible for the DBMS to
work out the best way to do things

Need to start optimisation from a canonical form

9

Optimisation Example

For every project located in Stafford, retrieve the project number, the controlling
department number, and the department manager’s last name, address and birth date

SELECT PNUMBER, DNUM, LNAME, ADDRESS, DATE
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM=DNUMBER AND

MGRSSN=SSN AND
PLOCATION=‘Stafford’

PROJECT

PNUMBER PLOCATION DNUM

DEPARTMENT

DNUMBER MGRSSN

EMPLOYEE

SSN LNAME ADDRESS DATE

10

Query Tree

𝑃𝑅𝑂𝐽𝐸𝐶𝑇

𝐷𝐸𝑃𝐴𝑅𝑇𝑀𝐸𝑁𝑇

𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸

𝜋!"#$%&',)"#$,*"+$&,+))'&,,,%)+-&

⋈$.',,"/,,"

⋈)"#$/)"#$%&'

𝜎!*01+-20"/“,4566789”

11

Canonical Form

×

×

𝑃𝑅𝑂𝐽𝐸𝐶𝑇

𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸

𝐷𝐸𝑃𝐴𝑅𝑇𝑀𝐸𝑁𝑇

𝜋!"#$%&',)"#$,*"+$&,+))'&,,,%)+-&

𝜎)"#$/)"#$%&' ∧$.',,"/,," ∧ !*01+-20"/“,4566789”

Cost Estimation

13

Cost Estimation
At this stage, no commitment to a particular physical plan

• Estimate the “cost” of each operator in terms of the size relation(s) on which it operates

• Choose a logical query plan that minimises the size of the intermediate relations (=
minimises the cost of the plan)

Assumption: system catalogue stores statistics about each relation

14

Statistics
𝑇(𝑅): Number of tuples in relation 𝑅 (cardinality of 𝑅)

𝑉(𝑅, 𝐴): Number of distinct values for attribute 𝐴 in relation 𝑅

Note: for any relation 𝑅, 𝑉(𝑅, 𝐴) ≤ 𝑇(𝑅) for all attributes 𝐴 on 𝑅

15

Scan
Operation of reading all tuples of a relation

𝑇(𝑠𝑐𝑎𝑛(𝑅)) = 𝑇(𝑅)

For all 𝐴 in 𝑅, 𝑉(𝑠𝑐𝑎𝑛(𝑅), 𝐴) = 𝑉(𝑅, 𝐴)

16

Product
𝑇(𝑅 × 𝑆) = 𝑇(𝑅)𝑇(𝑆)

For all 𝐴 in 𝑅, 𝑉(𝑅 × 𝑆, 𝐴) = 𝑉(𝑅, 𝐴)

For all 𝐵 in 𝑆, 𝑉 𝑅 × 𝑆, 𝐵 = 𝑉(𝑆, 𝐵)

17

Projection
𝑇(𝜋!(𝑅)) = 𝑇(𝑅)

For all A in R and 𝜋! 𝑅 ,		𝑉(𝜋!(𝑅)), 𝐴) = 𝑉(𝑅, 𝐴)

Assumption: projection does not remove duplicate tuples (value counts don’t change)

18

Selection
Two forms to consider:

• 𝜎"##$%&'#()*"+'((𝑅)
• 𝜎"##$%&'#(,)"##$%&'#(-(𝑅)

19

Selection case 1: attr=val

𝑇(𝜎!).(𝑅)) =
𝑇(𝑅)

𝑉(𝑅, 𝐴)

𝑉(𝜎!).(𝑅), 𝐴) = 1

Assumption: all values of A appear with equal frequency

20

Example: selection case 1: attr=val
𝑇(𝑅) = 1000
𝑉(𝑅, 𝐴) = 10
𝑉(𝑅, 𝐵) = 1000

𝑇 𝜎!).(𝑅) =
𝑇(𝑅)
𝑉(𝑅, 𝐴) = 100

𝑉 𝜎!). 𝑅 , 𝐴 = 1

𝑉 𝑅, 𝐵 > 𝑇 𝜎!). 𝑅 so V 𝜎!). 𝑅 , 𝐵 = 𝑇 𝜎!). 𝑅 = 100

21

Selection case 2: attr=attr

𝑇(𝜎!)/(𝑅)) =
𝑇(𝑅)

max(𝑉(𝑅, 𝐴), 𝑉(𝑅, 𝐵))

𝑉(𝜎!)/(𝑅), 𝐴) = 𝑉(𝜎!)/(𝑅), 𝐵) = min(𝑉(𝑅, 𝐴), 𝑉(𝑅, 𝐵))

Assumption: all values of A appear with equal frequency

Assumption: all values of B appear with equal frequency

Note: for all other attributes 𝑋 of 𝑅, 𝑉(𝜎!)/(𝑅), 𝑋) = 𝑉(𝑅, 𝑋)

This may be reduced because 𝑉(𝜎!)/(𝑅), 𝑋) ≤ 𝑇(𝜎!)/(𝑅))

22

Further Selection: Inequality
Selections involving inequalities and not equals require a more nuanced approach

Typical inequality written to match less half of a relation:

𝑇(𝜎!0.(𝑅)) = 𝑇(𝑅)/3 as a rule of thumb

What if we knew the range of values in 𝐴 and their distribution?

e.g., range [8, 57], uniformly distributed

23

Further Selection: Inequality
What about not equals?

𝑇(𝜎!1.(𝑅)) = 𝑇(𝑅) as a first approximation

Alternatively:

𝑇(𝜎!1.(𝑅)) = 𝑇(𝑅)
𝑉(𝑅, 𝐴) – 1
𝑉(𝑅, 𝐴)

24

Further Selection: Conjunction

𝑇 𝜎!)., ∧ /).- 𝑅 =
𝑇(𝑅)

𝑉 𝑅, 𝐴 𝑉(𝑅, 𝐵)

25

Further Selection: Disjunction

𝑇 𝜎!)., ∨ /).- 𝑅 =
𝑇(𝑅)
𝑉 𝑅, 𝐴

+
𝑇(𝑅)
𝑉(𝑅, 𝐵)

This overestimates the number of tuples

Alternatively,

𝑇 𝜎!)., ∨ /).- 𝑅 = 𝑇(𝑅) 1 −
1

𝑉 𝑅, 𝐴
1 −

1
𝑉(𝑅, 𝐵)

26

Join
Assume 𝑅 𝑋, 𝑌 ⋈ 𝑆 𝑌, 𝑍 , i.e., natural join on attribute 𝑌

Possible cases:

• 𝑅 and 𝑆 do not have any 𝑌 value in common:
• 𝑇(𝑅 ⋈ 𝑆) = 0

• 𝑌 is the key of 𝑆 and a foreign key of 𝑅:
• each tuple of 𝑅 joins with exactly one tuple of 𝑆
• 𝑇(𝑅 ⋈ 𝑆) = 𝑇(𝑅)

• All tuples of 𝑅 and 𝑆 have the same 𝑌-value.
• 𝑇(𝑅 ⋈ 𝑆) = 𝑇(𝑅)𝑇(𝑆)

To capture the most common cases we need to make assumptions

27

Join
Assume 𝑅(𝑋, 𝐴) ⋈!)/ 𝑆(𝐵, 𝑍)

Assumptions:

• If 𝑉(𝑅, 𝐴) ≤ 𝑉(𝑆, 𝐵) then every 𝐴-value of 𝑅 will have a joining tuple 𝐵-value in 𝑆

• All values of 𝐴 and 𝐵 appear with equal frequency

• For all other attributes 𝑋 of 𝑅 and 𝑌 of 𝑆,
𝑉(𝑅 ⋈!)/ 𝑆, 𝑋) = 𝑉(𝑅, 𝑋) and 𝑉(𝑅 ⋈!)/ 𝑆, 𝑌) = 𝑉(𝑆, 𝑌)
• This may be reduced because
𝑉(𝑅 ⋈!)/ 𝑆, 𝑋) ≤ 𝑇 𝑅 ⋈!)/ 𝑆 and 𝑉(𝑅 ⋈!)/ 𝑆, 𝑌) ≤ 𝑇(𝑅 ⋈!)/ 𝑆)

28

Join

𝑇(𝑅 ⋈!)/ 𝑆) =
𝑇(𝑅)𝑇(𝑆)

max(𝑉(𝑅, 𝐴), 𝑉(𝑆, 𝐵))

𝑉(𝑅 ⋈!)/ 𝑆, 𝐴) = 𝑉(𝑅 ⋈!)/ 𝑆, 𝐵) = min(𝑉(𝑅, 𝐴), 𝑉(𝑆, 𝐵))

29

Further Join
If there are multiple pairs of join attributes:

𝑇 𝑅 ⋈4,)5, ∧ 4-)5- 𝑆 =
𝑇 𝑅 𝑇(𝑆)

max 𝑉 𝑅, 𝑅1 , 𝑉 𝑆, 𝑆1 max(𝑉 𝑅, 𝑅2 , 𝑉 𝑆, 𝑆2)

30

Further Statistics
Distinct values assumes that each attribute value appears with equal frequency

• Potentially unrealistic

• Gives inaccurate estimates for joins and selects

Other approaches based on histograms:
• Equal-width: divide the attribute domain into equal parts, give tuple counts for each

• Equal-height: sort tuples by attribute, divide into equal-sized sets of tuples and give
maximum value for each set

• Most-frequent values: give tuple counts for top-n most frequent values

31

Histograms
Let 𝑅(𝐴, 𝐵, 𝐶) be a relation with 10000 tuples.

Consider the following equal-width histogram on 𝐴:

Τ(𝜎!),6(𝑅)) = ?

range [1,10] [11,20] [21,30] [31,40] [41,50]

tuples 50 2000 2000 3000 2950

32

Histograms
Let 𝑅(𝐴, 𝐵, 𝐶) be a relation with 10000 tuples.

Consider the following equal-width histogram on 𝐴:

Τ(𝜎!),6(𝑅)) =
50

10000
×
1
10
×𝑇(𝑅)

range [1,10] [11,20] [21,30] [31,40] [41,50]

tuples 50 2000 2000 3000 2950

Query Optimisation

34

Cost estimation
The “cost” of an operator is the cardinality of its output relation

• Cost of processing or materialising its output

Overall query plan cost is the sum of cardinalities of intermediate relations
• Excluding the leaves (i.e. input relations)

• Excluding the end result (i.e. cost of the final operator)

Now that we have a way of judging whether one plan is better than another...

...all we need to do to find the optimal plan is to compare all the possible plans

So how many possible plans are there?

35

How many query trees?
Considering plans with only × or ⋈, and with 𝑛 relations:

R𝑛 = 1

36

How many query trees?

R S𝑛 = 2 S R

Considering plans with only × or ⋈, and with 𝑛 relations:

Note: while × and ⋈ are symmetric, their corresponding physical operators aren’t;
the actual cost of 𝑅 ⋈ 𝑆 may be different from that of 𝑆 ⋈ 𝑅

37

How many query trees?

R S

T

R

T S

T

R S

S

T R

S

R T

R

S T

T

S R

𝑛 = 3
R T

S

S R

T

S T

R

T R

S

T S

R

Considering plans with only × or ⋈, and with 𝑛 relations:

38

How many query trees?

𝑛 = 4

4! permutations of the relations for each of those shapes

120 different query trees

Considering plans with only × or ⋈, and with 𝑛 relations:

39

How many query trees?
When a query joins 𝑛 relations, how many possible query trees are there?

Number of possible binary trees with 𝑛 leaves is given by 𝐶(𝑛 − 1), where

𝐶 𝑛 =
1

𝑛 + 1
2𝑛
2

=
2𝑛 !

𝑛 + 1 ! 𝑛!

(these are the Catalan numbers: 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862...)

𝑛! permutations of the relations over the 𝑛 leaves of the binary trees

#relns 1 2 3 4 5 6 7 8

#trees 1 2 12 120 1680 30240 665280 17297280

40

Join ordering
Number of possible query plans for non-trivial queries precludes exhaustive search
(and we haven’t even started considering choice of physical operators)

Join ordering is the main determiner of query cost

Need to guide search through space of possible join orderings

Prefer ⋈ over × (cheaper – smaller output relation)

41

Query graphs
Consider conjunctive queries with simple predicates only
(i.e. predicates of the form 𝑎% = 𝑎7 or 𝑎 = 𝑐𝑜𝑛𝑠𝑡)

Queries join base relations 𝑅,, 𝑅-, … , 𝑅8, possibly modified by selections

We can construct a query graph for queries of this type
• Undirected graph

• Vertices 𝑅!, 𝑅", … , 𝑅#
• A predicate of the form 𝑎$ = 𝑎%, where 𝑎$ ∈ 𝑅$ and 𝑎% ∈ 𝑅%, gives an edge 𝑅$, 𝑅%
• A predicate of the form 𝑎 = 𝑐𝑜𝑛𝑠𝑡, where 𝑎 ∈ 𝑅$, gives an edge 𝑅$, 𝑅$

42

Query graphs

SELECT PNUMBER, DNUM, LNAME, ADDRESS, DATE
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM=DNUMBER AND

MGRSSN=SSN AND
PLOCATION=‘Stafford’

𝑃𝑅𝑂𝐽𝐸𝐶𝑇 𝐷𝐸𝑃𝐴𝑅𝑇𝑀𝐸𝑁𝑇 𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸

𝐷𝑁𝑈𝑀 = 𝐷𝑁𝑈𝑀𝐵𝐸𝑅 𝑀𝐺𝑅𝑆𝑆𝑁 = 𝑆𝑆𝑁

𝑃𝐿𝑂𝐶𝐴𝑇𝐼𝑂𝑁 = ‘𝑆𝑡𝑎𝑓𝑓𝑜𝑟𝑑’

PROJECT

PNUMBER PLOCATION DNUM

DEPARTMENT

DNUMBER MGRSSN

EMPLOYEE

SSN LNAME ADDRESS DATE

43

Query graph shapes

chain cycle

clique tree

star

cyclic

44

Query graphs and join ordering
Some of these graph shapes are interesting because they can help us exclude join
orderings that would lead to × (cross products)

• Chain (with cycle as a special case)

• Star

• Clique

General approach: repeatedly choose edges (i.e. joins) to add to the join tree that are
adjacent to the edges already added

45

Join trees
Choice of join tree shapes also constrains search space

Two main classes of join tree

• Linear (left-deep, right-deep, zig-zag)

• Bushy

Choice depends on:

• Algorithms chosen (i.e. physical plan operators)

• Execution model

46

Linear join trees
• Every join introduces at least one base relation

• Better for pipelining - avoids materialisation

• Possible left-deep trees: 𝑛!

• Possible right-deep trees: 𝑛!

• Possible zig-zag trees: 𝑛! 289-

right-deepleft-deep zig-zag

47

Linear join trees
Combine with insights from query graph:

• Left/right-deep + chain: 289, possible join trees without ×

• Left/right-deep + star: 2 ∗ 𝑛 − 1 ! possible join trees without ×

• Left/right-deep + clique: 𝑛! possible join trees without ×

48

Bushy join trees
• Some joins may not join any base relations

• Need not be balanced

• Better for parallel processing

• Possible bushy trees: 𝑛! 𝐶 𝑛 − 1 = ⁄2𝑛 ! 𝑛!

bushy

49

Optimisation approaches
Wide variety of approaches – no single best approach

• Heuristic – transformation rules, keep transformed plan if cheaper

• Dynamic programming

• Randomised – avoid local minima by randomly jumping within big search spaces

• ...

(we could have a whole Part IV module on just this topic!)

50

Heuristic approach
1. Start with canonical form

2. Push 𝜎 operators down the tree

3. Introduce joins (combine × and 𝜎 to create ⋈)

4. Determine join order

5. Push 𝜋 operators down the tree

51

Optimising query trees

SELECT LNAME
FROM EMPLOYEE, WORKS_ON, PROJECT
WHERE PNAME=‘Aquarius’ AND

PNUMBER=PNO AND
ESSN=SSN AND
BDATE > ‘1957-12-31’

PROJECT

PNUMBER PNAME

WORKS_ON

SSN PNO

EMPLOYEE

ESSN LNAME BDATE

𝑃𝑅𝑂𝐽𝐸𝐶𝑇 𝑊𝑂𝑅𝐾𝑆_𝑂𝑁 𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸

𝑃𝑁𝑈𝑀𝐵𝐸𝑅 = 𝑃𝑁𝑂 𝐸𝑆𝑆𝑁 = 𝑆𝑆𝑁

𝑃𝑁𝐴𝑀𝐸 = ‘𝐴𝑞𝑢𝑎𝑟𝑖𝑢𝑠’ 𝐵𝐷𝐴𝑇𝐸 > ‘1957−12−31’

52

Query trees and canonical form
Useful to only consider left-deep trees

• Fewer possible left-deep trees than possible bushy trees - smaller search space when
investigating join orderings

• Left deep trees work well with common join algorithms
(nested-loop, index, one-pass – about which more later)

Canonical form should be:
1. a left-deep tree of products with

2. a conjunctive selection above the products and

3. a projection (of the output attributes) above the selection

53

Canonical form

×

×

𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸

𝑃𝑅𝑂𝐽𝐸𝐶𝑇

𝑊𝑂𝑅𝐾𝑆_𝑂𝑁

𝜋*"+$&

𝜎!"+$&/“+no58poq” ∧ !"#$%&'/!"0 ∧ &,,"/,," ∧ %)+-&r”stuvwsxwys”

54

Move 𝜎 down
Decompose selections containing conjunctive predicates:

𝜎:,∧:-∧⋯∧:8𝑅 ≡ 𝜎:,(𝜎:-…(𝜎:8 𝑅))

𝜎:,(𝜎:-(𝑅) ≡ 𝜎:-(𝜎:,(𝑅)

A selection of the form 𝜎"##$)*"+ can be pushed down to just above the relation that
contains 𝑎𝑡𝑡𝑟

A selection of the form 𝜎"##$,)"##$- can be pushed down to the product above the
subtree containing the relations that contain 𝑎𝑡𝑡𝑟1 and 𝑎𝑡𝑡𝑟2

55

Move 𝜎 down
𝜋*"+$&

𝜎!"#$%&'/!"0

×

×

𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸

𝑃𝑅𝑂𝐽𝐸𝐶𝑇

𝑊𝑂𝑅𝐾𝑆_𝑂𝑁

𝜎&,,"/,," 𝜎!"+$&/“+no58poq”

𝜎%)+-&r”stuvwsxwys”

56

Reorder Joins
If a query joins 𝑛 relations and we restrict ourselves only to left-deep trees, there are 𝑛!
possible join orderings

• Far more possible orderings if we don’t restrict to left-deep

For simplicity of search, adopt a greedy approach:

Reorder subtrees to put the most restrictive relations (fewest tuples) first

57

Reorder joins
𝜋*"+$&

𝜎!"#$%&'/!"0

×

×

𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸

𝑃𝑅𝑂𝐽𝐸𝐶𝑇

𝑊𝑂𝑅𝐾𝑆_𝑂𝑁

𝜎&,,"/,," 𝜎!"+$&/“+no58poq”

𝜎%)+-&r”stuvwsxwys”

58

Reorder Joins
𝜋*"+$&

𝜎&,,"/,,"

×

×

𝑃𝑅𝑂𝐽𝐸𝐶𝑇

𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸

𝑊𝑂𝑅𝐾𝑆_𝑂𝑁

𝜎!"#$%&'/!"0 𝜎%)+-&r”stuvwsxwys”

𝜎!"+$&/“+no58poq”

59

Create joins
Combine × with adjacent 𝜎 to form ⋈

Uses the relational transformation 𝜎:(𝑅×𝑆) ≡ 𝑅 ⋈: 𝑆

Much cheaper than product followed by selection

60

Create joins
𝜋*"+$&

⋈&,,"/,,"

𝑃𝑅𝑂𝐽𝐸𝐶𝑇

𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸𝑊𝑂𝑅𝐾𝑆_𝑂𝑁

⋈!"#$%&'/!"0 𝜎%)+-&r”stuvwsxwys”

𝜎!"+$&/“+no58poq”

61

Move 𝜋 down
If intermediate relations are to be kept in buffers (i.e. materialised), reducing the
degree of those relations (= number of attributes) allows us to use fewer buffer frames

62

Move 𝜋 down
𝜋*"+$&

⋈&,,"/,,"

𝑃𝑅𝑂𝐽𝐸𝐶𝑇

𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸

𝑊𝑂𝑅𝐾𝑆_𝑂𝑁

⋈!"#$%&'/!"0 𝜎%)+-&r”stuvwsxwys”

𝜎!"+$&/“+no58poq”

𝜋!"#$%&' 𝜋&,,",!"0

𝜋&,," 𝜋,,",*"+$&

63

Optimised logical query plan
𝜋*"+$&

⋈&,,"/,,"

𝑃𝑅𝑂𝐽𝐸𝐶𝑇

𝐸𝑀𝑃𝐿𝑂𝑌𝐸𝐸

𝑊𝑂𝑅𝐾𝑆_𝑂𝑁

⋈!"#$%&'/!"0 𝜎%)+-&r”stuvwsxwys”

𝜎!"+$&/“+no58poq”

𝜋!"#$%&' 𝜋&,,",!"0

𝜋&,," 𝜋,,",*"+$&

Execution Models

65

Execution models
A physical query plan is a tree of physical plan operators

The execution model defines:
• the interface that connects operators to each other

• how data is propagated between operators

• how operators are scheduled

Operator interface
• Relation(s) in, relation out

• Producer-consumer relationship

66

Pipelining
Pipelining – read input, process, propagate output to next operator

Benefits of pipelining:
• No buffering (because no materialisation)

• Faster execution (no materialisation, so no disk I/Os)

• More in-memory operations

Not all operators can be pipelined
• Some require intermediate relations to be materialised

• Some operators will always block

67

Iterators
Standard interface on each operator:

• open()
• getNext()
• close()

• Query engine calls the interface on the
root operator

• Calls to interface are propagated down
the tree

op op

open()

getNext()

tuple

getNext()

tuple

getNext()

end of stream

close()

68

Synchrony versus asynchrony
As presented, the operator interface is synchronous

• Operators don’t generate tuples until getNext() is called

• In reality, different operators will have different evaluation times

• Some operators may block – causing the whole plan to block

Move to an asynchronous implementation by introducing buffering:
• Within the operator calling the interface (the push model)

• Within the operator being called (the pull model)

• In the connections between operators (the stream model)

Asynchronous implementations minimise time during which blocking occurs

69

The push model
Propagate from the leaves upwards

• Producer propagates tuples as soon as
they’re available

• Producer propagates tuples regardless
of whether consumer has yet called
getNext()

• Consumer buffers incoming tuples until
it calls getNext()

Minimises idle time, good for pipelining

op

op

buffer

70

The pull model
Propagation driven from the root

• Producer buffers tuples until getNext() is
called

On-demand, close to pure implementation

op

op

buffer

71

The stream model
Connections as first-class objects:

• FIFO queues of tuples

• Producer propagates tuples to the queue
as soon as they’re available

• Consumer call to getNext() does not
block if there’s something in the queue

Asynchronous operators (but synchronous
streams), good for parallelisation

op

op

queue

Physical Plan Operators

73

Physical Plan Operators
Algorithm that implements one of the basic relational operations that are used in query
plans

For example, relational algebra has join operator

How that join is carried out depends on:
• structure of relations

• size of relations

• presence of indexes and hashes

• ...

74

Computation Model
Need to choose good physical-plan operators

• Estimate the “cost” of each operator

• Key measure of cost is the number of disk accesses
(far more costly than main memory accesses)

Assumption: arguments of operator are on disk, result is in main memory

75

Cost Parameters
𝑀 Main memory available for buffers

𝑆(𝑅) Size of a tuple of relation 𝑅 (in blocks)

𝐵(𝑅) Blocks used to store relation 𝑅

𝑇(𝑅) Number of tuples in relation 𝑅 (cardinality of 𝑅)

𝑉(𝑅, 𝑎) Number of distinct values for attribute 𝑎 in relation 𝑅

76

Clustered File
Tuples from different relations that can be joined (on particular attribute values) stored
in blocks together

R1 R2 S1 S2 R3 R4 S3 S4

77

Clustered Relation
Tuples from relation are stored together in blocks, but not necessarily sorted

R1 R2 R3 R4 R5 R6 R7 R8

78

Clustering Index
Index that allows tuples to be read in an order that corresponds to physical order

Ia

10
16
19

23
44
57

a

Scanning

80

Scan
• Read all of the tuples of a relation 𝑅

• Read only those tuples of a relation 𝑅 that satisfy some predicate

Two variants:
• Table scan

• Index scan

81

Table Scan
Tuples arranged in blocks

• All blocks known to the system

• Possible to get blocks one at a time

I/O Cost
• 𝐵(𝑅) disk accesses, if 𝑅 is clustered

• 𝑇(𝑅) disk accesses, if 𝑅 is not clustered

82

Index Scan
An index exists on some attribute of 𝑅

• Use index to find all blocks holding 𝑅
• Retrieve blocks for 𝑅

I/O Cost
• 𝐵(𝑅) + 𝐵(𝐼&) disk accesses if clustered

• 𝐵(𝑅) ≫ 𝐵(𝐼&) so treat as only 𝐵(𝑅)
• 𝑇(𝑅) disk accesses if not clustered

One-Pass Algorithms

84

One-Pass Algorithms
Read data from disk only once

Typically require that at least one argument fits in main memory

Three broad categories:
• Unary, tuple at a time (i.e. select, project) – non-blocking

• Unary, full-relation (i.e. duplicate elimination, grouping) – may be blocking

• Binary, full-relation – typically blocking

85

Unary, tuple at a time
foreach block of R:

copy block to input buffer
perform operation (select, project) on each tuple in block
move selected/projected tuples to output buffer

op

R input output

86

Unary, tuple at a time: Cost
In general, 𝐵(𝑅) or 𝑇(𝑅) disk accesses depending on clustering

If operator is a select that compares an attribute to a constant and index exists for
attributes used in select, ≪ 𝐵(𝑅) disk accesses

Requires 𝑀 ≥ 1

87

Unary, full-relation
foreach block of R

copy block to input buffer
update accumulator
move tuples to output buffer

op

R input output

accumulator

88

Unary, full-relation: Duplicate elimination
foreach block of R:

copy block to input buffer
foreach tuple in block

if tuple is not in accumulator
copy to accumulator
copy to output buffer

89

Unary, full-relation: Duplicate elimination
Requires 𝑀 ≥ 𝐵(𝛿(𝑅)) + 1 blocks of main memory

• 1 block for input buffer

• 𝐵(𝛿(𝑅)) blocks for accumulator (records each tuple seen so far)

• Accumulator implemented as in-memory data structure (tree, hash)

• If fewer than 𝐵(𝛿(𝑅)) blocks of memory available, thrashing likely

• Cost is 𝐵(𝑅) disk accesses

90

Unary, full-relation: Grouping
Grouping operators: min, max, sum, count, avg

• Accumulator contains per-group values

• Output only when all blocks of 𝑅 have been consumed

• Cost is 𝐵(𝑅) disk accesses

91

Binary, full-relation
Union, intersection, difference, product, join

• We’ll consider join in detail

In general, cost is 𝐵(𝑅) + 𝐵(𝑆)
• 𝑅, 𝑆 are operand relations

Requirement for one pass operation: min(𝐵(𝑅), 𝐵(𝑆)) ≤ 𝑀 − 1

92

Binary, full-relation: Join
• Two relations, 𝑅(𝑋, 𝑌) and 𝑆(𝑌, 𝑍), 𝐵(𝑆) < 𝐵(𝑅)

• Uses main memory search structure keyed on 𝑌

foreach block of 𝑆:
read block
add tuples to search structure

foreach block of 𝑅
copy block to input buffer
foreach tuple in block

find matching tuples in search structure
construct new tuples and copy to output

93

Nested-loop join
Also known as iteration join

Assuming that we’re joining relations 𝑅, 𝑆 on attribute 𝑎:

foreach 𝑟 ∈ 𝑅
foreach s ∈ 𝑆

if 𝑟. 𝑎 = 𝑠. 𝑎 then output 𝑟, 𝑠

94

Factors that affect cost
• Are the tuples of the relation stored physically together? (clustered)

• Are the relations sorted by the join attribute?

• Do indexes exist?

95

Example
Consider a join between relations 𝑅1, 𝑅2 on attribute 𝑎:

𝑇 𝑅1 = 10,000
𝑇 𝑅2 = 5,000
𝑆(𝑅1) = 𝑆(𝑅2) = 0.1
𝑀 = 101

96

Attempt #1: Tuple-based nested loop join
Relations not contiguous - one disk access per tuple

R1 is outer relation

R2 is inner relation

Cost for each tuple in R1 = cost to read tuple + cost to read R2

Cost = 𝑇 𝑅1 ∗ 1 + 𝑇 𝑅2
= 10,000 ∗ 1 + 5,000
= 50,010,000

97

Can we do better?
Use all available main memory (𝑀 = 101)

Read outer relation R1 in chunks of 100 blocks

Read all of inner relation R2 (using 1 block) + join

98

Attempt #2: Block-based nested loop join
Tuples of R1 stored in a 100-block chunk = 100 * 1/S(R1)

= 1,000 tuples

Number of 100-block chunks to store R1 = T(R1) / 1,000
= 10

Cost to read one 100-block chunk of R1 = 1,000 disk accesses

Cost to process each chunk = 1000 + T(R2) = 6,000 disk accesses

Total cost = 10 * 6,000 = 60,000 disk accesses

99

Can we do better?
What happens if we reverse the join order?

• R1 becomes the inner relation

• R2 becomes the outer relation

10
0

Attempt #3: Join reordering
Tuples of R2 stored in a 100-block chunk = 100 * 1/S(R2)

= 1,000 tuples

Number of 100-block chunks to store R1 = T(R2) / 1,000
= 5

Cost to read one 100-block chunk of R2 = 1,000 disk accesses

Cost to process each chunk = 1000 + T(R1) = 11,000

Total cost = 5 * 11,000 = 55,000 disk accesses

10
1

Can we do better?
What happens if the tuples in each relation are contiguous? (i.e. clustered)

10
2

Attempt #4: Contiguous relations
B(R1) = T(R1)/S(R1) = 1,000
B(R2) = T(R2)/S(R2) = 500

Cost to read one 100-block chunk of R2 = 100 disk accesses

Cost to process each chunk = 100 + B(R1) = 1,100

Total cost = (B(R2) / 100) * 1,100 = 5,500 disk accesses

10
3

Can we do better?
What happens if both relations are contiguous and sorted by a, the join attribute?

10
4

Attempt #5: Merge join
Read each block of R1 and R2 once only

Total cost = B(R1) + B(R2)
= 1,000 + 500
= 1,500 disk accesses

Two-Pass Algorithms

10
6

Can we do better?
What if R1 and R2 aren’t sorted by a?

...need to sort R1 and R2 first

10
7

Merge Sort
(i) For each 100 block chunk of R:

• Read chunk

• Sort in memory

• Write to disk

R1

R2

...

memory

sorted
chunks

10
8

Merge Sort
(ii) Read all chunks + merge + write out

...

memory

sorted
chunks

sorted
file

10
9

Merge Sort: Cost
Each tuple is read, written, read, written

Sort cost R1: 4 x 1,000 = 4,000 disk accesses

Sort cost R2: 4 x 500 = 2,000 disk accesses

11
0

Attempt #6: Merge join with sort
R1, R2 contiguous, but unordered

Total cost = sort cost + join cost
= 6,000 + 1,500
= 7,500 disk accesses

Nested loop cost = 5,500 disk accesses
• Merge join with sort does not necessarily pay off

11
1

Attempt #6, part 2
If R1 = 10,000 blocks contiguous

R2 = 5,000 blocks not ordered

Nested loop cost = (5,000/100) * (100 + 10,000)
= 505,000 disk accesses

Merge join cost = 5 * (10,000+5,000)
= 75,000 disk accesses

In this case, merge join (with sort) is better

11
2

Can we do better?
Do the entire files need to be sorted?

R1

R2

Joinsorted runs

11
3

Attempt #7: Improved merge join
1. Read R1 + write R1 into runs

2. Read R2 + write R2 into runs

3. Merge join

Total cost = 2,000 + 1,000 + 1,500 = 4,500 disk accesses

11
4

Two-pass Algorithms using Hashing
Partition relation into M-1 buckets

In general:
• Read relation a tuple at a time

• Hash tuple to bucket

• When bucket is full, move to disk and reinitialise bucket

11
5

Hash-Join
The tuples in R1 and R2 are both hashed using the same hashing function on the join
attributes

1. Read R1 and write into buckets

2. Read R2 and write into buckets

3. Join R1, R2

Total cost = 3 * (B(R1) + B(R2))
= 3 * (1,000 + 500)
= 4,500 disk accesses

Index-based Algorithms

11
7

Can we do better?
What if we have an index on the join attribute?

• Assume R2.a index exists and fits in memory

• Assume R1 contiguous, unordered

11
8

Attempt #8: Index join
Cost: Reads: 500 disk accesses

foreach R1 tuple:
• probe index – free

• if match, read R2 tuple: 1 disk access

11
9

How many matching tuples?
(a) If R2.a is key, R1.a is foreign key

expected number of matching tuples = 1

12
0

How many matching tuples?
(b) If V(R2,C) = 5000, T(R2) = 10,000 and uniform assumption,

expected matching tuples = 10,000/5,000 = 2

12
1

How many matching tuples?
(c) Assume domain(R2, C)=1,000,000, T(R2) = 10,000
with alternate assumption

expected matching tuples = 10,000 /1,000,000 = 1/100

12
2

Attempt #8: Index join
(a) Cost = 500+5000 * 1 * 1 = 5,500 disk accesses

(b) Cost = 500+5000 * 2 * 1 = 10,500 disk accesses

(c) Cost = 500+5000 * 1/100 * 1 = 550 disk accesses

Summary

12
4

Select logical query plan

Query Processing

Parse query

Select physical query plan

Execute plan

Generate logical query plan

Rewrite logical query plan

choose
cheapest

use
heuristics

Next Lecture:
Transactions and Concurrency

