

Relational Algebra 2

COMP3211 Advanced Databases

Dr Heather Packer – hp3@ecs.soton.ac.uk

3

Recap

• Set-theoretic bases for Relational Algebra

• Set Operations

– Union, Difference, Cartesian Product

• Relational Operations

– Renaming, Projection, Selection

• Sets and Multisets

4

Commutativity does not hold for Cartesian Product named

Name Addr

Union Campus

Co-op Burgess Road

Costa Burgess Road

Addr Name

Campus Union

Burgess Road Co-op

Burgess Road Costa

≠

R ⨉ S ≠ S ⨉ R

Name

Union

Co-op

Costa

Addr

Campus

Burgess Road

Burgess Road

≠x
Name

Union

Co-op

Costa

Addr

Campus

Burgess Road

Burgess Road

x

5

Commutativity does not hold for Cartesian Product unnamed

Union Campus

Co-op Burgess Road

Costa Burgess Road

Campus Union

Burgess Road Co-op

Burgess Road Costa

≠

R ⨉ S ≠ S ⨉ R

Union

Co-op

Costa

Campus

Burgess Road

Burgess Road

≠x

Union

Co-op

Costa

Campus

Burgess Road

Burgess Road
x

6

Relational Database binary operations

• Binary Operators between two relations

• Used to combine information from 2 relations into a new relation

• Core to Relational Databases

7

Θ-Join ⨝F

• Theta Join combines two relations using a predicate F

R ⨝F S
• It is equivalent to the cartesian product of the two relations followed by a selection

using the predicate:

σF(R⨉S)
• It is called a “theta join” because in the original notation, Θ was used in place of F

and was limited to:

=, <, >, <=, >=, !=

• A theta join that only uses the operator = is called an Equijoin

8

Θ-Join Example

R

Food⨝ Food.Shop=Locations.Name Locations

This is also an Equijoin

Shop Food Price Units

Union Apples 0.50 2

Union Bananas 0.80 4

Co-op Apples 0.50 5

Co-op Peaches 0.75 3

Costa Bananas 0.90 1

Costa Peaches 1.10 1

Name Addr

Union Campus

Co-op Burgess Road

Costa Burgess Road

Shop Food Price Units Name Addr

Union Apples 0.50 2 Union Campus

Union Bananas 0.80 4 Union Campus

Co-op Apples 0.50 5 Co-op Burgess Road

Co-op Peaches 0.75 3 Co-op Burgess Road

Costa Bananas 0.90 1 Costa Burgess Road

Costa Peaches 1.10 1 Costa Burgess Road

Food Locations

9

Natural Join

• An natural join is a Θ-join in which no predicate is specified

R ⨝ S
• It is defined an equijoin over all the common attributes of the two relations

• The result contains the common attributes followed by the remaining non-common
attributes in R and S

– like an equijoin but the common attributes only appear once

10

Natural Join Example - Food ⨝Locations

R

Food⨝ Locations =
Common attributes: Shop
Non-common attributes:

Food, Price, Units, Addr

Shop Food Price Units

Union Apples 0.50 2

Union Bananas 0.80 4

Co-op Apples 0.50 5

Co-op Peaches 0.75 3

Costa Bananas 0.90 1

Costa Peaches 1.10 1

Shop Addr

Union Campus

Co-op Burgess Road

Costa Burgess Road

Food Price Units Shop Addr

Apples 0.50 2 Union Campus

Bananas 0.80 4 Union Campus

Apples 0.50 5 Co-op Burgess Road

Peaches 0.75 3 Co-op Burgess Road

Bananas 0.90 1 Costa Burgess Road

Peaches 1.10 1 Costa Burgess Road

Food Locations

Renamed Name to Shop
to make this work

11

Natural Join ⨝
• Natural Join can be formalised as the Cartesian Product of R and S, followed by the

selection on equality amongst the common attributes (A1,.. Ak). Followed by a
projection.

R ⋈ S = π<list>(σR.A1=S.A1 ⋀ … ⋀ R.Ak = S.Ak (R ⨉ S))

• where <list> contains

– All the attributes unique to R

– All the common attributes

– All the attributes unique to S

12

Natural join ⨝Example

• Given relations:

• REGISTERED(student, course, term)

• TEACHES(lecturer, course, term)

REGISTERED ⋈ TEACHES

= TAUGHT(student, course, term, lecturer)

13

Left Outer Join ⟕
The Left outer join of two relations R and S is a natural join which also
includes tuples from R which do not have corresponding tuples in S;
missing values are set to null

R ⟕ S = R ⋈ S ∪ ((R - πr1, r2,…,rn(R ⋈ S)) ⨉ {<null,…, null>})

A B

a 1

b 2

B C

1 x

1 y

3 z

A B C

a 1 x

a 1 Y

b 2 null

R R ⟕ SS

Attributes in R A relation on attributes in S but not
in R, that contains a single tuple

A tuple of nulls with
same arity as S

14

Outer Join

Left Outer Join R ⟕ S ((R - πr1, r2,…,rn(R ⋈ S)) ⨉ {}) ∪ R ⋈ S

Right Outer

Join

R ⟖ S ((S – πs1, s2,…,sn(R ⋈ S)) ⨉ {}) ∪ R ⋈ S

Full Outer Join R ⟗ S (((R - πr1, r2,…,rn(R ⋈ S)) ⨉ {}) ∪

((S – πs1, s2,…,sn(R ⋈ S)) ⨉ {}) ∪ R ⋈

S)

15

Semijoin ⋉
Semijion is like a natural join but the resulting attributes are only taken
from A

R ⋉S

R ⋉S ≡ π L (R ⋈ S)

where L is the list of attributes in R

A B

a 1

b 2

B C

1 x

1 y

3 z

A B

a 1

R S R ⋉ S

16

Antijoin ▷
• The antijoin is like semijoin but the result only contains tuples from R

that have no match in S

R ▷S

R ▷S ≡ R – (R ⋉ S)

A B

a 1

b 2

B C

1 x

1 y

3 z

A B

b 2

R S R ▷ S

Relational Transformations

18

Relational Transformations

• Relational expressions can be transformed with transformation rules

• Used during SQL query optimisation to rewrite user queries

• Database engine aims to improve CPU, memory or disk usage

19

Relational Transformations

• When an expression consists of a series of nested projections, only the last in a
sequence of projections is required

πLπM…πN(R) = πL(R)

• But not if they are extended projections that rely on prior expressions

20

Relational Transformations

• If a selection contains a predicate with conjunctive terms (ie ANDs)

• The terms can cascade into individual selections

σp∧q∧r(R) = σp(σq(σr(R)))

21

Relational Transformations - commutative

• Selection and theta-join are commutative operations

σp(σq(R)) = σq(σp(R))
R⨝pS = S ⨝pR

• But for theta-join, only when using the named perspective

– Eg using attribute names and not $1 etc

22

Relational Transformations - commutative

• When an expression consists of a selection followed by a projection

• The projection can be done first, if the selection predicate only involves attributes
in the projection list:

πA1,…Am(σp(R)) = σp(πA1,…Am (R))

• Selection and projection are commutative

23

Relational Transformations - associativity

• Joins exhibits associativity:

(R ⨝ S) ⨝ T = R ⨝ (S ⨝ T)

24

Relational Transformations - distributes

• Where an expression consists of a theta-join followed by a projection

• The selection can be performed on both relations prior to the theta-join, if the
predicate only involves attributes being joined

σp(R ⨝r S) = σp(R) ⨝r σp(S)

• In this case, selection distributes over theta-join

25

Relational Transformations - distributes

• Selection also distributes over set operations

σp(R ∪ S) = σp(R) ∪ σp(S)
σp(R ∩ S) = σp(R) ∩ σp(S)
σp(R - S) = σp(R) - σp(S)

26

Relational Transformations - distributes

• Projection distributes over set union

πL(R ∪ S)= πL(R) ∪ πL(S)

27

Relational Transformations - distributes

• Projection distributes over theta join

πL1 ∪ L2 (R ⨝r S) = πL1(R) ⨝r π L2(S)
if projection list can be divided into attributes of the relations being joined, and join

condition only uses attributes from the projection list

Relational Algebra and SQL

29

Relational Transformations

• A Basic SQL statement consists of the following form:

SELECT Ri1.A1, …, Rim.Am

FROM R1, …,RK

WHERE Θ

• R1, …,RK are distinct relation names (no repetitions)

• Each Rij.Aj is an attribute of Rij (1≤ ij ≤ k)

• Θ is a condition

30

SQL vs Relational Algebra

SELECT Ri1.A1, …, Rim.Am

FROM R1, …, RK = πRi1.A1, …, Rim.Am (σΘ(R1 ×…× RK))

WHERE Θ

SELECT * no projection operator is used i.e. expression is σΘ(R1 ×…× RK)

SQL Relational Algebra

SELECT Projection π

FROM Cartesian Product

WHERE Selection σ

31

SQL vs Relational Algebra Examples

DB Schema: FACULTY(name, dpt, salary), CHAIR(dpt, name)

Query: Find the salaries of department chairs

C-SALARY(dpt,salary) =

Relational Algebra:

πF.dpt, F.salary(σF.name = C.name ⋀ F.dpt = C.dpt (FACULTY ⨉ CHAIR))
also

πdpt, salary(FACULTY ⋈ CHAIR)

32

SQL vs Relational Algebra Examples

C-SALARY(dpt,salary) =

πF.dpt, F.salary(σF.name = C.name ⋀ F.dpt = C.dpt (FACULTY ⨉ CHAIR))

SQL:

SELECT FACULTY.dpt, FACULTY.salary

FROM FACULTY, CHAIR

WHERE FACULTY.name = CHAIR.name AND FACULTY.dpt = CHAIR.dpt

33

SQL vs Relational Algebra Examples - No Selection

• Goal: Compute the Cartesian product of relations of S and T

• Relational algebra: S ⨉ T

• SQL:

SELECT *

FROM S, T

• WHERE clause is not always necessary in SQL

– E.g., when having a relational algebra query with no selection operation

34

SQL vs Relational Algebra Examples - Self-Joins

• Goal: Compute expressions that rely on Self-Joins

• However, relation names in the FROM list must be distinct

• This stops us from computing self-joins, ie FROM R, R

• Many interesting queries involve self-joins

35

Self-Join Example

• DB Schema:

FATHER(father-name, child-name)

• Compute

GRANDFATHER(grandfather-name, grandchild-name)

First take the Cartesian Product of Father and Father

FATHER FATHER

x

father-name child-name

David Nick

Nick Joe

Joe Mick

father-name child-name

David Nick

Nick Joe

Joe Mick

36

father-name child-name father-name child-name

David Nick David Nick

Nick Joe David Nick

Joe Mick David Nick

David Nick Nick Joe

Nick Joe Nick Joe

Joe Mick Nick Joe

David Nick Joe Mick

Nick Joe Joe Mick

Joe Mick Joe Mick

father-name child-name father-name child-name

David Nick Nick Joe

Nick Joe Joe Mick

Self-Joins

Second, select where the child-name is the same as the father-name

σ $2=$3 (FATHER x FATHER)

FATHER x FATHER

37

Project the first and last attributes

π$1,$4 (σ $2=$3 (FATHER x FATHER))

father-name child-name father-name child-name

David Nick Nick Joe

Nick Joe Joe Mick

Self-Joins

father-name child-name

David Joe

Nick Mick

σ $2=$3 (FATHER x FATHER)

38

π$1,$4 (σ $2=$3 (FATHER x FATHER))

Self-Joins father-name child-name

David Joe

Nick Mick

grandfather-name grandchild-name

David Joe

Nick Mick

Rename the attributes to grandfather-name and grandchild-name

ρgrandfather-name/father-name, grandchild-name/child-name (π$1,$4 (σ$2=$3 (FATHER ⨉ FATHER)))

GRANDFATHER(grandfather-name, grandchild-name)

39

• In relational algebra, we can reference columns by position number

– Eg in our expression for GRANDFATHER:

ρfather-name/grandfather-name, child-name/grandchild-name (π$1,$4 (σ$2=$3 (FATHER ⨉ FATHER)))

• SQL does not support referencing columns by position number

• Instead, SQL supports an aliasing mechanism

Self-Joins

40

Aliases in SQL

• SQL allows us to give one or more new names to a relation

– these are aliases of the given relation

• Rules for Aliases Creation

– Aliases are created in the FROM list

• FROM <relation name> AS <renamed relation name>, …

– The new names can be referenced in the SELECT list and in the WHERE clause

Example:

– Expressing R ⨉ R in SQL:

SELECT *

FROM R AS S, R AS T

41

Aliases in SQL

• DB Schema: FATHER(father-name,child-name)

• Compute

GRANDFATHER(grandfather-name,grandchild-name) in SQL:

SELECT R.father-name AS grandfather-name, T.child-name AS grandchild-name

FROM FATHER AS R, FATHER AS T

WHERE R.child-name = T.father-name

• SQL allows for the renaming of attribute names in the SELECT list

• Aliases in SQL are used not only out of necessity, but also for convenience in order to create
short nicknames for relations.

42

Relational Completeness of SQL

• SQL can express all relational algebra queries

– (i.e., it is a relationally complete database query language)

• As we saw

SELECT DISTINCT …

FROM …

WHERE …

• can express Cartesian product, projection, and selection

43

Relational Completeness of SQL

• SQL has explicit constructs for union and difference:

• Union R ∪ S:

(SELECT * FROM R) UNION (SELECT * FROM S)

• Difference R – S:

(SELECT * FROM R) EXCEPT (SELECT * FROM S)

• UNION and EXCEPT eliminates duplicates! (Set semantics)

• UNION ALL and EXCEPT ALL does not (Multiset semantics)

Next Lecture:
Query Processing

