## 디 University of <br> (i) Southampton

## Relational Algebra

COMP3211 Advanced Databases

Dr Heather Packer - hp3@ecs.soton.ac.uk

## What is a Relational Algebra?

- An Algebra is a mathematical system consisting of:
- Operands - variables or values from which new values can be constructed
- Operators - symbols denoting procedures that construct new values from the given values
- A Relational Algebra
- Operands - relations or variables that represent relations
- Operators - common things that can are performed on relations


## Relational Algebra

- Set Operations
- U Set union
- $\cap$ Set intersection
-     - Set difference
- X Cartesian product
_ $\div$ Set Division
- Relational Database Specific Operations
- $\sigma$ Selection
- $\pi$ Projection
- $\bowtie$ Join
- Set Functions
- sum
- avg
- count
- any
- max
- min


## Relational Algebra

- The input of a relational algebra operator is one or more relations
- The result of an operation is always a relation
- Necessary to use relational algebra in a cascaded manner

(4) wemer
(9) soutincompton


## What is a relation?

## Relations as Subset of Cartesian Products of Sets

Set $\mathrm{S}_{1}$ (Student IDs)

$S_{1} \times S_{2}=$


## Relations as Subset of Cartesian Products of Sets

Set $\mathrm{S}_{1}$ (Student IDs)



## Tuples and attributes

- $R \subseteq D_{1} \times D_{2} \times \ldots \times D_{k}$ is a set of $k$-tuples
- R can be represented in a table with k columns
- Values from domain $D_{i}$ are the only values allowed in the $i^{\text {th }}$ column
- The columns in relational data models have names called attributes

Students

| ID | Name | DeptiD |
| :---: | :---: | :---: |
| 68943 | William | ECS |
| 94433 | John | ECS |

In the relation Students, attributes are: ID, Name, DeptID

## Properties of Relations

A relation $R\left(A_{1}, \ldots, A_{k}\right)$ has the following properties:

1. Each row represents a $k$-tuple of R
2. The values of an attribute are all from the same domain
3. Each attribute of each tuple in a relation contains a single atomic value
4. The ordering of rows is immaterial (relations are just sets)
5. All rows are distinct (relations are just sets)
6. Named perspective: the semantics of each column is conveyed its name
7. Named perspective: the ordering of the attributes is not significant
8. Unnamed perspective: the ordering of attributes is significant (we access columns by their positions)
(5) menans

Southampton

## Relational Operators

## Relational Algebra

- Set Operations
- U Set union
-     - Set difference
- X Cartesian product
- $\cap$ Set intersection
- Relational Specific Operations
- $\rho$ Renaming
- $\sigma$ Selection
- $\pi$ Projection
- $\bowtie$ Join
(4) wemer
(9) soutincompton


## Set Operations

## Union

- The union of two relations is the set of tuples where each tuple appears in either set


## $R \cup S$



- $R \cup S=\left\{\left(a_{1}, \ldots, a_{k}\right):\left(a_{1}, \ldots, a_{k}\right)\right.$ is in $R$ or $\left(a_{1}, \ldots, a_{k}\right)$ is in $\left.S\right\}$
- Note: no duplicate tuples


## Union

- The Union operation must work on relations with the same attributes

| R |  |  | S |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| B | C |  | D | E |
| 1 | 2 | $U$ | 4 | 4 |
| 3 | 4 |  | 5 | 6 |$\quad$ ?

- If relations have different attributes, we can rename the attributes of $S$ by using the renaming operator


## Union

- Some versions of the algebra allow the attributes of $R$ and $S$ to have different names

- The columns in the result are given new names


## Difference

- The difference between $R$ and $S$ is all the tuples that appear in $R$ but not in $S$
R - S

| B | C | - | B | C | B | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 |  | 3 | 4 | 1 | 2 |
| 3 | 4 |  | 5 | 6 |  |  |

- $R-S=\left\{\left(a_{1}, \ldots, a_{k}\right):\left(a_{1}, \ldots, a_{k}\right)\right.$ is in $R$ and $\left(a_{1}, \ldots, a_{k}\right)$ is not in $\left.S\right\}$


## Cartesian Product

# R X S 



- Notice the clashing attribute names are renamed


## Cartesian Product

- Cartesian Product of relations R X S, given R and S having a m-ary and n-ary relation respectively, is calculated by:
- Every tuple of $R$ is paired with every tuple of $S$
- The tuples are concatenated together to give a (m+n)-ary tuple
- Note that the resulting size of the the relation is the product of the size of each relation.
- The Cartesian Product can get large
- Concretely:

$$
\begin{aligned}
& R \times S=\left\{\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right):\left(a_{1}, \ldots, a_{m}\right) \text { is in } R \text { and }\left(b_{1}, \ldots, b_{n}\right) \text { is in } S\right\} \\
& |R \times S|=|R| \times|S|
\end{aligned}
$$

## Set Operation Rules

- Union
- Commutativity does hold because order within a set is unimportant : R $\cup S=S \cup R$
- Associativity does hold: $R \cup(S \cup T)=(R \cup S) \cup T$
- Difference:
- Commutativity does not hold for Difference: $R-S \neq S$ - $R$ (except if $R=S$ )
- Associativity does not hold for Difference: $R$ - (S -T) $\neq(R-S)$ - T
- Cartesian Product:
- Note: Ordering of attributes is important here
- Commutativity does not hold: $R \times S \neq S \times R$
- Associativity does hold: $\mathrm{R} \times(\mathrm{S} \times \mathrm{T})=(\mathrm{R} \times \mathrm{S}) \times \mathrm{T}$
- Distributivity across Union does hold: $R \times(S \cup T)=(R \times S) \cup(R \times T)$


## Derived Operations

- Some operations can be derived by other relational algebra operations
- Intersection:

$$
R \cap S=R-(R-S)
$$

| $R$ |  |
| :---: | :---: |
| B | C |
| 1 | 2 |
| 3 | 4 |



| $R$ |  |
| :--- | :--- |
| B | C |
| 1 | 2 |
| 3 | 4 |


| R-S |  |  | $R \cap S$ |  |
| :---: | :---: | :---: | :---: | :---: |
| B | C |  | B | C |
| 1 | 2 | $=$ | 3 | 4 |

(4) wemen

Southampton

## Relational Specific Operations

## Renaming Operator $\rho$

- The renaming operator takes one relation and changes attribute names

$$
\rho_{\mathrm{B} / \mathrm{A}}(\mathrm{~S})
$$

- Returns a relation with schema identical to $S$ but the attribute name $A$ has been replaced by B
- Rename more than one attributes using ',' in the subscript
- E.g. let S with schema S(A, B, C, D, E)

$$
\rho_{X / B, Y / D}(S)
$$

- Creates a relation with schema $\mathrm{S}(\mathrm{A}, \mathrm{X}, \mathrm{C}, \mathrm{Y}, \mathrm{E})$


## Renaming Operator $\rho$ Example

- If the relational algebra variant needs same attribute names for union
- Then use the renaming operator

| $R$ |  |
| :---: | :---: |
| B | C |
| 1 | 2 |
| 3 | 4 |



## Renaming Operator $\rho$ Example

- If the relational algebra variant needs same attribute names for union
- Then use the renaming operator


## $\rho_{B / D, C / E}(S)$

| R |  | $\rho_{B / D, C / E}(S)$ |  | $R \cup \rho_{B / D, C / E}(S)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B | C | B | C | B | C |
| 1 | 2 | 4 | 4 | 1 | 2 |
| 3 | 4 | 5 | 6 | 3 | 4 |
|  |  |  |  | 4 | 4 |
|  |  |  |  | 5 | 6 |

## Projection Operator $\pi$

- The Projection Operator removes changes what attributes appear in the relation


## $\pi_{L}(\mathrm{R})$

- It removes all columns whose attributes do not appear in the list $L$
- Columns may be re-arranged according to the order in the list
- Any duplicate rows are also eliminated


## Projection Operator m Example

| Sells |  |  |  |
| :--- | :--- | :--- | :---: |
| Shop | Food | Price | Units |
| Union | Apples | 0.50 | 2 |
| Union | Bananas | 0.80 | 4 |
| Co-op | Apples | 0.50 | 5 |
| Co-op | Peaches | 0.75 | 3 |
| Costa | Bananas | 0.90 | 1 |
| Costa | Peaches | 1.10 | 1 |

$\pi_{\text {Food, Price }}$ (Sells)

| Food | Price |
| :--- | :--- |
| Apples | 0.50 |
| Bananas | 0.80 |
| Peaches | 0.75 |
| Bananas | 0.90 |
| Peaches | 1.10 |

Note: only one entry for apples

## Extended Projection

- Some algebras extend projection to allow arbitrary expressions involving attributes


## $T_{B+C \rightarrow A}(R)$

- Arithmetic on attributes eg B+C A
- Allows duplicate occurrences of same attribute eg:

$$
\pi_{B, B}\left(\begin{array}{|l|l|l|}
\hline B & C \\
\hline 1 & 2 \\
3 & 4
\end{array}\right)=\begin{array}{|l|l|}
\hline B 1 & B 2 \\
\hline 1 & 1 \\
\hline 3 & 3
\end{array}
$$

## Extended Projection Example

Sells

| Shop | Food | Price | Units |
| :--- | :--- | :--- | :---: |
| Union | Apples | 0.50 | 2 |
| Union | Bananas | 0.80 | 4 |
| Co-op | Apples | 0.50 | 5 |
| Co-op | Peaches | 0.75 | 3 |
| Costa | Bananas | 0.90 | 1 |
| Costa | Peaches | 1.10 | 1 |

$\boldsymbol{T}_{\text {Food, Price/Units } \rightarrow \text { Cost }}$ (Sells)

| Food | Cost |
| :--- | :--- |
| Apples | 0.25 |
| Bananas | 0.20 |
| Apples | 0.10 |
| Peaches | 0.25 |
| Bananas | 0.90 |
| Peaches | 1.10 |

## Selection Operator

- The Selection Operator returns a subset of the relation where the tuples satisfy a predicate


## $\sigma_{\ominus}(\mathrm{R})$

- $R$ is a relation and $\Theta$ is a condition or predicate
- The condition $\Theta$ is an expression built from:
- Comparison operators $=,<,>, \neq, \leq, \geq$ applied to operands that are constants or attribute names (or positions)
- The Boolean logic operators $\wedge, \vee, \neg$ applied to basic clauses.


## Selection Operator $\sigma$ Predicates

- Example predicates:
- Price > 0.70
- Shop = "Co-op"
- (Shop $=$ "Co-op") $\wedge($ Units $>1)$
- We reference columns via attribute names or via their "component number" (position) by using \$
- Shop = "Co-op"
- \$1 = "Co-op"
- $\$ 4>1$


## Selection Operator $\sigma$ Example

Sells

| Shop | Food | Price | Units |
| :--- | :--- | :--- | :---: |
| Union | Apples | 0.50 | 2 |
| Union | Bananas | 0.80 | 4 |
| Co-op | Apples | 0.50 | 5 |
| Co-op | Peaches | 0.75 | 3 |
| Costa | Bananas | 0.90 | 1 |
| Costa | Peaches | 1.10 | 1 |

$\sigma_{\text {Food }}=$ "Bananas" $\left(\sigma_{\text {Units>1 }}(\right.$ Sells $\left.)\right)$

| Shop | Food | Price | Units |
| :--- | :--- | :--- | :---: |
| Union | Bananas | 0.80 | 4 |

This is equivalent to
$\sigma_{\text {Food="Bananas" }} \wedge$ Units>1 $($ Sells)

## Algebraic Laws for the Selection Operation

- Algebraic laws can be useful in query optimization
$-\sigma_{\ominus 1}\left(\sigma_{\ominus 2}(R)\right)=\sigma_{\Theta 1 \wedge \Theta 2}(R)$
- Commutative: $\sigma_{\ominus 1}\left(\sigma_{\ominus 2}(R)\right)=\sigma_{\ominus 2}\left(\sigma_{\ominus 1}(R)\right)$
$-\sigma_{\ominus}(R \times S)=\sigma_{\ominus}(R) \times S$
- if $\Theta$ mentions only attributes of $R$
- Cartesian product is expensive so reducing the size of $R$ is beneficial
(4) wemer
(3) soutinompton


## Sets vs. Multisets

## Sets vs. Multisets (Bags)

- A Multiset or Bag is like a Set but elements may appear more than once
- Example:
$-\mathrm{R}=\{1,3,3,6,6,6,7\}, \mathrm{S}=\{1,1,6,6,7\}$ are both multisets
- Union of two multisets:
$-\{1,3,3,6,6,6,7\} \cup\{1,1,6,6,7\}=\{1,1,1,3,3,6,6,6,6,6,7,7\}$
- Difference between two multisets:
$-\{1,3,3,6,6,6,7\}-\{1,1,6,6,7\}=\{3,3,6\}$
- Cartesian product:
$-\{1,3,3\} \times\{1,1,6\}=\{<1,1>,<1,1>,<1,6>,<3,1>,<3,1>,<3,6>,<3,1>,<3,1>,<3,6>\}$


## Operations on Multisets (Bags)

- Given $\mu(x, B)$, defined as the number of occurrences of $\mathbf{x}$ in multiset $\mathbf{B}$
- Union R $\cup S$

$$
-\mu(t, R \cup S)=\mu(t, R)+\mu(t, S) \quad \text { for all } t \text { in } R \text { and } S
$$

- Difference R-S

$$
-\mu(t, R-S)=\max \{\mu(t, R)-\mu(t, S), 0\} \quad \text { for all } t \text { in } R \text { and } S
$$

- Intersection $\mathrm{R} \cap \mathrm{S}$
$-\mu(t, R \cap S)=\min \{\mu(t, R), \mu(t, S)\} \quad$ for all $t$ in $R$ and $S$
- Cartesian Product:

$$
-\mu\left(t t^{\prime}, R \times S\right)=\mu(t, R) * \mu\left(t^{\prime}, S\right) \quad \text { for all } t \text { in } R \text { and } t^{\prime} \text { in } S
$$

## Operations on Multisets (Bags)

- Projection:
- If $R$ is a multiset, then $\pi_{x}(R)$ is also a multiset
- If $R$ is a set, then $\pi_{x}(R)$ may be a multiset
- Selection:
- If $R$ is a multiset, then the selection $\sigma_{\Theta}(R)$ may be a set
- If $R$ is a set, then the selection $\sigma_{\Theta}(R)$ is a set


## Multisets in SQL

- SQL is multiset based
- Efficiency:
- Duplicate elimination may take quadratic time
- For example, after a projection
- Necessity:
- Eliminating duplicates might result in information loss/errors (e.g., in computing averages)
- How to eliminate duplicates in SQL? Use the DISTINCT keyword

SELECT DISTINCT <attribute list>
FROM <relation list>
(4. wimety

Southampton

## Next Lecture: <br> Relational Algebra 2

