


Access Structures
COMP3211 Advanced Databases

Dr Nicholas Gibbins - nmg@ecs.soton.ac.uk



3

Overview
• Index basics

• Sequential files

• Dense indexes

• Sparse indexes

• Multi-level indexes

• Secondary indexes

• Indirection

• B+trees

• Hash tables



Index Basics



5

Index basics
• Relations are stored in files

• Files are stored as collections of blocks

• Blocks contain records that correspond to tuples in the relation

• How do we find the tuples that match some criteria?



6

Indexes

Index
Blocks 

containing 
records

search
value

matching 
records



7

Sequential Files
• Tuples of a relation are sorted by their 

primary key

• Tuples are then distributed among 
blocks in that order

• Common to leave free space in each 
block to allow for later insertions

10
20

30

40

50

60

70

80

90

100

110
120

data file



8

To Index or Not To Index?
Maintaining an index costs time (processor, disk access)

• When entries are added to the relation, index must be updated

• Index must be maintained to make good use of resources

There is a trade off between:
• Rapid access when retrieving data

• Speed of updating the database



9

Dense Index
• Sequence of blocks holding only keys 

and pointers to records

• One key/pointer pair for every record in 
data file

• Blocks of index are in same order as 
those of the data file

• Key-pointer pair much smaller than 
record

10
20

30
40

50

60

70
80

90
100

110

120
...
...

...

10
20

30

40

50

60

70

80

90

100

110
120

data file
dense
index



10

Dense Index
• Fewer blocks than data file, fewer disk 

accesses

• Keys are sorted, so can use binary 
search

• Can keep in main memory if small 
enough (no disk accesses)

10
20

30
40

50

60

70
80

90
100

110

120
...

...

...

10
20

30

40

50

60

70

80

90

100

110
120

data file
dense
index



11

Sparse Index
• One key/pointer pair for every block in 

data file

• Can only be used if data file is sorted by 
search key

• Uses less space than dense index

10
30

50
70

90

110
...
...

...

...

...

...

...

...

...

10
20

30

40

50

60

70

80

90

100

110
120

data file
sparse
index



12

Multi-level Index
• Index file may cover many blocks

• May still need many disk accesses

• Use sparse index over the first index
• Can’t be a dense index (would use the 

same number of blocks as the index 
being indexed)

• Can create a third level index, but in 
general prefer B-trees

10
30

50
70

90

110

...

...

...

...

...

...

...

...

...

10
20

30

40

50

60

70

80

90

100

110
120

10
110
...

...

...

data file
sparse

first-level
sparse

second-level



13

Notes on pointers:
• Block pointers (as used in sparse 

indexes) can be smaller than record 
pointers (used in dense indexes)
• Physical record pointers consist of a block 

pointer and an offset

• If file is contiguous, then we can omit 
pointers 
• Compute offset from block size and key 

position

• e.g. assuming 1kB per block and a pointer 
to block with key k1, to get block with key 
k3, use offset of (3-1)*1 = 2kB

b1

b2

b3

b4

k1
k2

k3
k4



14

Sparse vs. Dense Tradeoff
Sparse: 

• Less index space per record can keep more of index in memory

• Better for insertions

Dense:  
• Can tell if a record exists without accessing file

• Needed for secondary indexes



15

Duplicate Keys
Dense index approach #1 10

10

10

20

20

30

30

30

40

50

50
60

data file

10
10

10
20

20

30

30
30

40
50

50

60
...
...

...

dense
index



16

Duplicate Keys
Dense index approach #2

• Point at the first record with a given value

• better approach? 
(smaller index)

10
10

10

20

20

30

30

30

40

50

50
60

data file

10
20

30
40

50

60
...
...

...

...

dense
index



17

Duplicate Keys
Sparse index approach #1

• Searching for (e.g.) 20 will give 
unexpected results

10
10

10
20

20

30

30

30

40

50

50
60

data file

10
10

20
30

40

50
...
...

...

...

sparse
index

20



18

Duplicate Keys
Sparse index approach #2

• Index contains first new key from each 
block

10
10

10

20

20

30

30

30

40

50

50
60

data file

10
20

30
30

40

50

...

...

...

...

sparse
index



19

Duplicate Keys
Sparse index approach #2

• Can we exclude sequences of blocks with 
repeated keys?

• Point only to first instance of each value

10
10

10

20

20

30

30

30

40

50

50
60

data file

10
20

30
40

50

sparse
index



20

Deletion from Sparse Index
10
30

50
70

90

110
...
...

...

...

...

...

...

...

...

10
20

30

40

50

60

70

80

90

100

110
120

data file
sparse
index



21

Deletion from Sparse Index
• Delete record 40 10

30

50
70

90

110
...
...

...

...

...

...

...

...

...

10
20

30
40

50

60

70

80

90

100

110
120

data file
sparse
index



22

Deletion from Sparse Index
• Delete record 40 10

30

50
70

90

110
...
...

...

...

...

...

...

...

...

10
20

30
40

50

60

70

80

90

100

110
120

data file
sparse
index



23

Deletion from Sparse Index
• Delete record 30

• Delete record 30 from data file and 
reorder block

• Update entry in index

10
30

50
70

90

110
...
...

...

...

...

...

...

...

...

10
20

30

40

50

60

70

80

90

100

110
120

data file
sparse
index



24

Deletion from Sparse Index
• Delete record 30

• Delete record 30 from data file and 
reorder block

• Update entry in index

10
30

50
70

90

110
...
...

...

...

...

...

...

...

...

10
20

30

40

50

60

70

80

90

100

110
120

data file
sparse
index

40

40



25

Deletion from Sparse Index
• Delete records 30 and 40

• Delete records from data file

• Update index

10
30
50

70
90

110
...
...

...

...

...

...

...

...

...

10
20

30

40

50

60

70

80

90

100

110
120

data file
sparse
index



26

Deletion from Sparse Index
• Delete records 30 and 40

• Delete records from data file

• Update index

10
30
50

70
90

110
...
...

...

...

...

...

...

...

...

10
20

30

40

50

60

70

80

90

100

110
120

data file
sparse
index

50

70
90



27

Deletion from Dense Index
• Delete record 30

• Delete record from data file

• Remove entry from index and update 
index

10

20
30

40
50

60

70
80

90
100

110

120
...
...

...

10
20

30

40

50

60

70

80

90

100

110
120

data file
dense
index



28

Deletion from Dense Index
• Delete record 30

• Delete record from data file

• Remove entry from index and update 
index

10

20
30

40
50

60

70
80

90
100

110

120
...
...

...

10
20

30

40

50

60

70

80

90

100

110
120

data file
dense
index

40
40
50



29

Insertion into Sparse Index
10

30
40

60
90

10
20

30

40

50

60

90
100

data file
sparse
index



30

Insertion into Sparse Index
• Insert record 34

• Easy! We have free space in the right 
block of the data file

10

30
40

60
90

10
20

30

40

50

60

90
100

data file
sparse
index

34



31

Insertion into Sparse Index
• Insert record 15

• Add to data file and immediately 
reorganise

• Update index

10
30

40

60
90

10
20

30

40

50

60

90
100

data file
sparse
index



32

Insertion into Sparse Index
• Insert record 15

• Add to data file and immediately 
reorganise

• Update index

• Alternatively:
• Insert new block (chained file)

• Update index

10
30

40

60
90

10
20

30

40

50

60

90
100

data file
sparse
index

20
30

1520



33

Insertion into Sparse Index
• Insert record 25

• Block is full, so add to 
overflow block

• Reorganise later...

10

30
40

60
90

10
20

30

40

50

60

90
100

data filesparse index



34

Insertion into Sparse Index
• Insert record 25

• Block is full, so add to 
overflow block

• Reorganise later...

10

30
40

60
90

10
20

30

40

50

60

90
100

data filesparse index

25

overflow blocks



35

Secondary Indexes
• Unlike a primary index, does not 

determine placement of records in data 
file

• Location (order) of records may have 
been decided by a primary index on 
another field

• Secondary indexes are always dense

• Pointers are record pointers, not block 
pointers

20
40

10

80

70

50

60

100

90

120

110
30

data file



36

Secondary Indexes
• Unlike a primary index, does not 

determine placement of records in data 
file

• Location (order) of records may have 
been decided by a primary index on 
another field

• Secondary indexes are always dense

• Pointers are record pointers, not block 
pointers

20
40

10

80

70

50

60

100

90

120

110
30

10

20
30

40
50

60

70
80

90
100

110

120
...

...

...

data file
dense
index



37

Secondary Indexes
• Sparse secondary indexes make no 

sense

20
40

10

80

70

50

60

100

90

120

110
30

20

10
70

60
90

110

...

...

...

...

data file
sparse
index



38

Secondary Indexes
• May have higher levels of sparse indexes 

above the dense index

20
40

10

80

70

50

60

100

90

120

110
30

10

20
30

40
50

60

70
80

90
100

110

120
...

...

...

data file
dense

first-level



39

Secondary Indexes
• May have higher levels of sparse indexes 

above the dense index

20
40

10

80

70

50

60

100

90

120

110
30

10

20
30

40
50

60

70
80

90
100

110

120
...

...

...

10

60
110

...

...

data file
dense

first-level
sparse

second-level



40

Duplicate values
• Secondary indexes need to cope with 

duplicate values in the data file

20
10

20

40

10

40

30

10

20

10

30
40

data file



41

Duplicate values
Solution #1: repeated entries

Problems
• excess disk space

• excess search time

20
10

20

40

10

40

30

10

20

10

30
40

10

10
10

10
20

20

20
30

30
40

40

40
...

...

...

data fileindex



42

Duplicate values
Solution #2: drop repeated keys

Problems
• variable size records in index

20
10

20

40

10

40

30

10

20

10

30
40

10

20

20

30

40

40

...

...

...

data fileindex



43

Duplicate values
Solution #3: chain records with same key

Problems
• need to add fields to records

• need to follow chain

20
10

20

40

10

40

30

10

20

10

30
40

data file

10
20

30
40

...

index



44

Duplicate values
Solution #4: indirection via buckets of 
pointers

Advantages
• If we have multiple secondary indexes on 

a relation, we can calculate conjunctions 
by taking intersections of buckets

• Don’t need to examine data file!

20
10

20

40

10

40

30

10

20

10

30
40

data filebuckets

10
20

30
40

...

index



45

Conventional indexes
Advantages:

• Simple

• Index is sequential file and good for scans

Disadvantages:
• Inserts expensive, and/or

• Lose sequentiality & balance



B+trees



47

B+trees
• The most widely used tree-structured indexes

• Balanced multi-way tree
• Yields consistent performance

• Sacrifices sequentiality



48

B+tree example

45

30 120 150 180

3 5 11

30 35

45 60

120 130

150 156 179

180 200

Non-leaf nodes

Leaf nodes

Root node



49

Example non-leaf node

120 150 180

keys < 120
120 ≤ keys < 150

150 ≤ keys < 180
keys ≥ 180



50

Non-leaf nodes
Root node typically kept in memory

• Entrance point to index – used as frequently as any other node

• Some nodes from second level may also be kept in memory



51

Example leaf node

150 156 179 to next leaf

to record 
with

key 150

to record 
with 

key 156

to record 
with

key 179

from non-leaf



52

Leaf nodes
If the index is a primary index

• Leaf nodes are records containing data, stored in the order of the primary key

• The index provides an alternative to a sequential scan

If the index is a secondary index
• Leaf nodes contain pointers to the data records

• Data can be accessed in the sequence of the secondary key

• A secondary index can point to any sort of data file, for example one created by hashing



53

Node size
Each node is of fixed size and contains

• n keys

• n+1 pointers 120 150 180

150 156 179

non-leaf

leaf



54

Minimum nodes
Don’t want nodes to be too empty (efficient use of space)

Non-leaf: é(n+1)/2ù pointers

Leaf: ë(n+1)/2û pointers



55

Minimum node examples (n=3)

120 150 180

150 156 179

120

150 156

non-leaf

leaf

minimumfull



56

B+tree rules
1. All leaves same distance from root (balanced tree)

2. Pointers in leaves point to records except for “sequence pointer”

3. Number of pointers/keys for B+tree of order n:

max 
ptrs

max 
keys

min ptrs
to data

min keys

Non-leaf n+1 n é(n+1)/2ù é(n+1)/2ù - 1

Leaf n+1 n ë(n+1)/2û ë(n+1)/2û

Root n+1 n 1 1



57

B+tree arithmetic example
First, some parameters:

• block size 4kb, of which:
b = 4000 bytes available for storage of records

• key length
k = 10 bytes

• record length
r = 100 bytes (including the key)

• block pointer
p = 6 bytes



58

B+tree arithmetic example
A leaf node in a primary index can accommodate lp records, where lp = ë(b-p)/rû = 39 
records

A leaf node in a secondary index can accommodate ls records,
where ls = ë(b-p)/(k+p)û = 249 records

A non-leaf node could accommodate i entries, where
i = ë(b-p)/(k+p)û = 249 records

To allow for expansion, assume initial node occupancy of u, where u = 0.6



59

B+tree primary index
For a primary index (the leaf nodes hold the records):

• A non-leaf node initially points to 
i*u = blocks

• Each leaf initially contains 
lp*u = records

• 1 level of non-leaf nodes initially points to 
(lp*u)(i*u) = records

• 2 levels of non-leaf nodes initially point to 
(i*u)2 = blocks
(lp*u)(i*u)2 = records



60

B+tree primary index
For a primary index (the leaf nodes hold the records):

• A non-leaf node initially points to 
i*u = 149 blocks

• Each leaf initially contains 
lp*u = 23 records

• 1 level of non-leaf nodes initially points to 
(lp*u)(i*u) = 3,427 records

• 2 levels of non-leaf nodes initially point to 
(i*u)2 = 22,201blocks
(lp*u)(i*u)2 = 510,623 records



61

B+tree secondary index
For a secondary index (the leaf nodes hold record pointers):

• A non-leaf node initially points to 
i*u = blocks

• A leaf node initially points at
ls*u = records

• 1 level of non-leaf nodes initially points to 
(ls*u)(i*u) = records

• 2 levels of non-leaf nodes initially point to 
(ls*u)(i*u)2 = records



62

B+tree secondary index
For a secondary index (the leaf nodes hold record pointers):

• A non-leaf node initially points to 
i*u = 149 blocks

• A leaf node initially points at
ls*u = 149 records

• 1 level of non-leaf nodes initially points to 
(ls*u)(i*u) = 22,201records

• 2 levels of non-leaf nodes initially point to 
(ls*u)(i*u)2 = 3,307,949 records

It is not normally necessary to go more than about three levels deep in the index



63

B+tree Insertion
Four cases to consider:

1. Space available in leaf

2. Leaf overflow

3. Non-leaf overflow

4. New root



64

Case 1: insert key=32

100

30

3 5 11 30 31



65

Case 1: insert key=32

100

30

3 5 11 30 31 32



66

Case 2: insert key=7

100

30

3 5 11 30 31



67

Case 2: insert key=7

100

30

3 5 11 30 313 5 7 11



68

Case 2: insert key=7

100

30

3 5 11 30 313 5

7

7 11

30



69

Case 3: insert key=160

100

120 150 180

150 156 179 180 200



70

Case 3: insert key=160

100

120 150 180

150 156 179 180 200160 179



71

Case 3: insert key=160

100

120 150 180

150 156 179 180 200160 179

180



72

Case 3: insert key=160

100

120 150 180

150 156 179 180 200160 179

180

160



73

Case 4: insert 45

10 20 30

1 2 3

10 12

20 25

30 32 40



74

Case 4: insert 45

10 20 30

1 2 3

10 12

20 25

30 32 40

40 45



75

Case 4: insert 45

10 20 30

1 2 3

10 12

20 25

30 32 40

40 45

40



76

Case 4: insert 45

10 20 30

1 2 3

10 12

20 25

30 32 40

40 45

40

30



77

B+tree Deletion
Four cases to consider:

1. Simple case

2. Coalesce with sibling

3. Re-distribute keys

4. Cases 2. or 3. at non-leaf



78

Case 2: delete key=50 (n=4)

10 40 100

10 20 30 40 50

100



79

Case 2: delete key=50 (n=4)

10 40 100

10 20 30 40

100



80

Case 2: delete key=50 (n=4)

10 40 100

10 20 30 40

100



81

Case 4: delete key=37 (n=4)

10 100

10 14

22

25 2631

20

20

30 37

40 45

30 10040

25 100



82

Case 4: delete key=37 (n=4)

10 100

10 14

22

25 2631

20

20

40 45

30 10040

25 100

30



83

Case 4: delete key=37 (n=4)

10 100

10 14

22

25 2631

20

20

40 45

30 10040

25 100

30

40



84

Case 4: delete key=37 (n=4)

10 100

10 14

22

25 2631

20

20

40 45

25 100

30

4025



85

Case 4: delete key=37 (n=4)

10 100

10 14

22

25 2631

20

20

40 45

30

4025

new root



86

B+tree deletions in practice
Often, coalescing is not implemented

• Too hard and not worth it!



87

B-trees versus static indexed sequential files
B-trees consume more space

• Blocks are not contiguous

• Fewer disk accesses for static indexes, even allowing for reorganisation

Concurrency control is harder in B-trees

but

DBA does not know:
• when to reorganise

• how full to load pages of new index



Hashing



89

Hashing
Main memory hash table

• Hash function h() takes a key and computes an integer value

• Value is used to select a bucket from a bucket array

• Bucket array contains linked lists of records

Secondary storage hash table
• Stores many more records than a main memory hash table

• Bucket array consists of disk blocks



90

Hashing approach #1
• Hash function calculates block pointer 

directly, or as offset from first block

• Requires bucket blocks to be in fixed, 
consecutive locations

key ® h(key)
...

buckets



91

Hashing approach #2
• Hash function calculates offset in array 

of block pointers (directory)

• Used for “secondary” search keys

key ® h(key)
...

bucketsdirectory



92

Example hash function
Key = ‘x1 x2 … xn’ (n byte character string),  b buckets

h:  add x1 + x2 + ….. xn, compute sum modulo b

Not a particularly good function

Good hash function has the same expected number of keys per bucket for each bucket



93

Buckets
Do we keep keys sorted?

Yes, if CPU time is critical and inserts/deletes are relatively infrequent



94

Hashing example
Two records per bucket

0

1

2

3



95

Hashing example
Insert a, b, c, d

• h(a) = 1

• h(b) = 2

• h(c) = 1

• h(d) = 0

d

a
c

b

0

1

2

3



96

Hashing example: Overflow
Insert e

• h(e) = 1

d

a
c

b

0

1

2

3

e



97

Hashing example: Deletion
Delete e

a

b
c

e

f

g

0

1

2

3

d



98

Hashing example: Deletion
Delete e

a

b
c

e

f

g

0

1

2

3

d



99

Hashing example: Deletion
Delete f

(move g up) a

b
c

f

g

0

1

2

3

d



10
0

Hashing example: Deletion
Delete f

(move g up) a

b
c

f

g

0

1

2

3

d

g



10
1

Hashing example: Deletion
Delete f

(move g up) a

b
c

f

g

0

1

2

3

d

g



10
2

Hashing example: Deletion
Delete c

(move d from overflow block)
a

b
c

g

0

1

2

3

d



10
3

Hashing example: Deletion
Delete c

(move d from overflow block)
a

b
c

g

0

1

2

3

d



10
4

Rule of thumb:
Space utilisation should be between 50% and 80%

Utilisation = #keys used / total #keys that fit

If < 50%, wasting space

If > 80%, overflows significant

Depends on how good hash function is and on #keys/bucket



10
5

How do we cope with growth?
Overflows and reorganizations

Dynamic hashing
• Extensible

• Linear



10
6

Extensible hashing
Combines two ideas:

1. Use i of b bits output by hash 
function, where i grows over time

h(k) ® 1 0 0 10 0 1 1

i

b



10
7

Extensible hashing
Combines two ideas:

1. Use i of b bits output by hash 
function, where i grows over time

2. Use a directory

...

h(k)[i] ®

bucketsdirectory



10
8

Example
h(k) gives 4 bits

2 keys/bucket

0
0001

1001

1100

1

i=1



10
9

1100

Example
Insert 1010

• Bucket overfull

0
0001

1001
1

i=1



11
0

10

11

00

01

i=2

1100

Example
Insert 1010

• Bucket overfull

• Extend (double) directory

• Split bucket

0001

1001

1010

1100



11
1

10

11
1100

Example
Insert 0111

0001

1001

1010

1100

00

01

i=2



11
2

10

11
1100

Example
Insert 0111

0001

1001

1010

1100

00

01

i=2
0111



11
3

10

11
1100

Example
Insert 0000

0001
0111

1001

1010

1100

00

01

i=2



11
4

10

11
1100

Example
Insert 0000

0001
0111

1001

1010

1100

00

01

i=2

0000
0001

0111



11
5

10

11
1100

Example
Insert 0000

0001
0111

1001

1010

1100

00

01

i=2

0000
0001

0111



11
6

10

11

1100

Example
Insert 1001

0111

1001

1010

1100

00

01

i=2

0000
0001



11
7

10

11

1100

Example
Insert 1001

0111

1001

1010

1100

00

01

i=2

0000
0001

1001

1001

1010



11
8

10

11

1100

Example
Insert 1001

0111

1001

1010

1100

00

01

i=2

0000
0001

1001

1001

1010

010
011

000
001

i=3

110

111

100

101



11
9

Extensible hashing: deletion
• No merging of blocks

• Merge blocks and cut directory if possible

• (Reverse insert procedure)



12
0

Overflow chains
Example: many records with duplicate 
keys

• Insert 1100 0

1101

1101

1

i=1



12
1

10

11

Overflow chains
Example: many records with duplicate 
keys

• Insert 1100 00

1101

1101

01

i=2



12
2

10

11

Overflow chains
Example: many records with duplicate 
keys

• Insert 1100

• Add overflow block

00

1101

1101

01

i=2

1100



12
3

Summary
Pro

• Can handle growing files

• with less wasted space

• with no full reorganizations

Con
• Indirection

• not bad if directory in memory

• Directory doubles in size

• now it fits in memory, now it doesn’t

• suddenly increase in disk accesses!



12
4

Linear hashing
Another dynamic hashing scheme

Combines two ideas

1. Use i least significant bits of hash, 
where i grows over time

h(k) ® 1 0 0 10 0 1 1

i

b



12
5

Linear hashing
Another dynamic hashing scheme

Combines two ideas

1. Use i least significant bits of hash, 
where i grows over time

2. Hash file grows incrementally and 
linearly
(unlike extensible hash file, which 
periodically doubles)

h(k) ® 1 0 0 10 0 1 1

i

b



12
6

Linear hashing
Another dynamic hashing scheme

Combines two ideas

1. Use i least significant bits of hash, 
where i grows over time

2. Hash file grows incrementally and 
linearly
(unlike extensible hash file, which 
periodically doubles)

Lookup rule:
if h(k)[i] £ m (maximum bucket index)
then look at bucket h(k)[i]
else  look at bucket h(k)[i] - 2i -1 

h(k) ® 1 0 0 10 0 1 1

i

b



12
7

Example: b=4 bits, i=1, 2 keys/bucket

0000
1010

0101
1111

m = max used bucket = 1

0 1



12
8

Example: b=4 bits, i=2, 2 keys/bucket

0000
1010

0101
1111

future growth buckets

m = max used bucket = 01

00
10

01
11



12
9

Example: b=4 bits, i=2, 2 keys/bucket

0000
1010

0101
1111

1010
future growth buckets

00
10

01
11

10

m = max used bucket = 10



13
0

Example: b=4 bits, i=2, 2 keys/bucket

0000 0101
1111

1010
future growth buckets

00 01
11

10

m = max used bucket = 10

0101
insert 0101



13
1

Example: b=4 bits, i=2, 2 keys/bucket

0000 0101
0101

1010 1111
future growth buckets

00 01
11

10 11

m = max used bucket = 11



13
2

Example: further growth

0000 0101
0101

1010 1111
future growth buckets

00 01 10 11

m = max used bucket = 11



13
3

Example: i=3

0000 0101
0101

1010 1111

000
100

001
101

010
110

011
111

m = max used bucket = 11



13
4

Example: i=3

0000 0101
0101

1010 1111

000
100

001
101

010
110

011
111

m = max used bucket = 100

100



13
5

Example: i=3

0000 0101
0101

1010 1111

000 001
101

010
110

011
111

m = max used bucket = 101

0101
0101

100 101



13
6

Example: i=3

0000 1010 1111

000 001 010
110

011
111

m = max used bucket = 101

0101
0101

100 101



13
7

When do we expand file?
Keep track of utilisation

U = #used slots / total #slots

If U > threshold, then increase m (and maybe i)



13
8

Linear Hashing
Pro

• Can handle growing files

• with less wasted space

• with no full reorganizations

• No indirection like extensible hashing

Con
• Can still have overflow chains



Indexing versus Hashing



14
0

Indexing vs Hashing
Hashing good for probes given a key:

SELECT ...
FROM R
WHERE R.A = 5



14
1

Indexing vs Hashing
Indexing (Including B-trees) good for range searches:

SELECT ...
FROM R
WHERE R.A > 5



Multidimensional
Access Structures
COMP3211 Advanced Databases

Dr Nicholas Gibbins – nmg@ecs.soton.ac.uk



14
3

Overview
• Conventional indexes

• Hash-like
• grid files, partitioned hashing

• Hierarchical indexes
• multiple key, kd-trees, quad trees, r-trees, ub-trees

• Bitmap indexes



14
4

Multidimensional Access Structures
Indexes discussed so far are one-dimensional

• assume a single search key

• require a single linear order for keys (B-trees)

• require that the key be completely known for any lookup (hash tables)



14
5

Applications
Geographic information systems

• partial match queries

• range queries

• nearest-neighbour queries



Conventional Indexes



14
7

Scenario
• Personnel database

• EMPLOYEE table with attributes
• dept

• salary

• How can we find employees who work in the sales department and have salaries 
greater than £40,000? 



14
8

Approach #1
1. Get all matching records using an index on one attribute

2. Check values of other attribute on those records

Idept
...

scan for 
salary>40000

dept=sales



14
9

Approach #2
1. Use secondary indexes on each attribute to get two sets of record pointers

2. Take intersection of sets

Idept
... compare

for 
intersection

dept=sales

Isalary
...

salary>40000



15
0

Approach #3
1. Use secondary index on one attribute to select suitable index on other attribute

2. Get all matching records using selected index

Idept

dept=sales

...
Isalary

Isalary

Isalary

sales

research

production



15
1

For which queries is this index good?
• dept=sales Ù salary=40000

• dept=sales Ù salary>40000

• dept=sales

• salary = 40000



Grid Files



15
3

Grid File
• Partition multi-dimensional space with a 

grid

• Grid lines partition space into stripes

• Intersections of stripes from different 
dimensions define regions

salary

age

0 40 55 100
0k

20k

40k

100k



15
4

Grid File
• Partition multi-dimensional space with a 

grid

• Grid lines partition space into stripes

• Intersections of stripes from different 
dimensions define regions

salary

age

0 40 55 100
0k

20k

40k

100k

age < 40
salary < 100k
salary >= 40k



15
5

Grid File
• Each region associated with a pointer to 

a bucket of record pointers

• Attribute values for record determine 
region and therefore bucket

• Fixed number of regions – overflow 
blocks used to increase bucket size as 
necessary

• Can index grid on value ranges

salary

age

0 40 55 100
0k

20k

40k

100k



15
6

Grid files
Pro

• Good for multiple-key search

• Supports partial-match, range and nearest-neighbour queries

Con
- Space, management overhead (nothing is free)

- Need partitioning ranges that evenly split keys



Partitioned Hash



15
8

Partitioned Hash
• Hash function takes a list of attribute 

values as arguments

• Bits of hash value divided between 
attributes
• Effectively, a hash function per attribute

0 00 1 001 11 1

hash1 hash2

attribute 1 attribute 2



15
9

Example
hash1(sales) = 0

hash1(research) = 1

hash2(10000) = 00

hash2(20000) = 01

hash2(40000) = 10

hash2(100000) = 11

000

001

010

011

100

101

110

111



16
0

Insertion
hash1(sales) = 0

hash1(research) = 1

hash2(10000) = 00

hash2(20000) = 01

hash2(40000) = 10

hash2(100000) = 11

Fred works in sales
Fred’s salary is £40,000

000

001

010

011

100

101

110

111

Fred



16
1

Retrieval
hash1(sales) = 0

hash1(research) = 1

hash2(10000) = 00

hash2(20000) = 01

hash2(40000) = 10

hash2(100000) = 11

dept=sales Ù salary=40000

000

001

010

011

100

101

110

111



16
2

Retrieval
hash1(sales) = 0

hash1(research) = 1

hash2(10000) = 00

hash2(20000) = 01

hash2(40000) = 10

hash2(100000) = 11

salary=20000

000

001

010

011

100

101

110

111



16
3

Retrieval
hash1(sales) = 0

hash1(research) = 1

hash2(10000) = 00

hash2(20000) = 01

hash2(40000) = 10

hash2(100000) = 11

dept=sales

000

001

010

011

100

101

110

111



16
4

Partitioned hash
Pro

• Good hash function will evenly distribute records between buckets

• Supports partial-match queries

Con
• No good for nearest-neighbour or range queries



kd-Tree



16
6

kd-Tree
• Multidimensional binary search tree

• Each node splits the k-dimensional space along a hyperplane

• Nodes contain
• an attribute-value pair

• a pair of pointers

• All nodes at the same level discriminate for the same attribute

• Levels rotate between attributes of all dimensions



16
7

Example, k=2

salary

age

0 40 70 100
0k

45k

100k

55k



16
8

Example, k=2
age=40

salary

age

0 40 70 100
0k

45k

100k

55k



16
9

Example, k=2

salary=45k

age=40

salary

age

0 40 70 100
0k

45k

100k

55k



17
0

Example, k=2

salary=45k

age=40

salary=55k

salary

age

0 40 70 100
0k

45k

100k

55k



17
1

Example, k=2

salary=45k

age=40

salary=55k

age=70

salary

age

0 40 70 100
0k

45k

100k

55k



17
2

Example, k=2

salary=45k

20,20k

age=40

salary=55k

age=70
25,80k
35,45k

40,35k
55,45k

70,20k

50,55k
80,60k

salary

age

0 40 70 100
0k

45k

100k

55k



17
3

Partial-Match Queries
• If we know value of attribute, we can choose which branch to explore

• If we don’t know value of attribute, must explore both branches



17
4

Adapting kd-Trees to Secondary Storage
Average path length from root to leaf: log2n

Disk accesses should be kept as few as possible

Two approaches:
1. Multiway nodes (split values into n ranges)

2. Group nodes in blocks (node plus descendants to a given ply)



Quad-Tree



17
6

Quad-Trees
Two main types:

• Region quad-tree

• Point quad-tree



17
7

Region Quad-tree
• Each partition divides the space into four 

equal area sub-regions
• ne, nw, se, sw

• Split regions if they contain more 
records than will fit into a block

• Operations similar to those for kd-trees

salary

age

0 25 50 100
0k

25k

50k

100k



17
8

Region Quad-tree

salary

age

0 25 50 100
0k

25k

50k

100k



17
9

Region Quad-tree
50,50k

nw sw ne se

salary

age

0 25 50 100
0k

25k

50k

100k



18
0

Region Quad-tree
50,50k

25,25k

nw sw ne se

nw sw ne se

salary

age

0 25 50 100
0k

25k

50k

100k



18
1

Region Quad-tree

25,80k
50,55k

50,50k

25,25k
55,45k
70,20k

80,60k

nw sw ne se

20,20k 35,45k
40,35k

nw sw ne se

salary

age

0 25 50 100
0k

25k

50k

100k



18
2

Point Quad-Tree
• Partitions are not equal area

• Split lines centred on data points

• ne/nw/se/sw sub-regions

• Otherwise, equivalent to region quad-
tree

salary

age

0 35 50 100
0k

45k

55k

100k



18
3

Point Quad-Tree

salary

age

0 35 50 100
0k

45k

55k

100k



18
4

Point Quad-Tree
50,55k

nw sw ne se

salary

age

0 35 50 100
0k

45k

55k

100k



18
5

Point Quad-Tree
50,55k

35,45k

nw sw ne se

nw sw ne se

salary

age

0 35 50 100
0k

45k

55k

100k



18
6

Point Quad-Tree

25,80k

50,55k

35,45k
55,45k
70,20k

50,55k
80,60k

nw sw ne se

20,20k 35,45k 40,35k

nw sw ne se

salary

age

0 35 50 100
0k

45k

55k

100k



R-Tree



18
8

R-Trees
• Used to represent data that consists of 

k-dimensional data regions

• Internal nodes of tree represent regions 
that contain data regions

• Regions typically defined as top-right, 
bottom-left coordinates

r1

r2

r3

d1

d2

d3

d4

d5
d6



18
9

R-Trees

d1

d2
d3

d4

d5
d6

root



19
0

R-Trees

r1

r2

r3

d1

d2
d3

d4

d5
d6

root

r1 r2 r3



19
1

R-Trees

r1

r2

r3

d1

d2
d3

d4

d5
d6

root

r1 r2 r3

d1

d2

d3

d4

d5

d6



UB-Tree



19
3

UB-Tree
Basic approach:

• Map n-dimensional space onto a 1-
dimensional line using a fractal space-
filling curve

• Partition ranges and index using a B+tree

• When querying, identify regions of n-d 
space (= segments of 1-d line) that 
intersect with query rectangle



19
4

Z-Index
Map domain of each attribute onto n-bit 
integer

Order of points on Z-curve given by bit-
interleaving the positions on the axes

x = x1x2

y = y1y2

z-index = y1x1y2x2



19
5

Z-Index
Map domain of each attribute onto n-bit 
integer

Order of points on Z-curve given by bit-
interleaving the positions on the axes

x = x1x2

y = y1y2

z-index = y1x1y2x2

00 01 10 11

00

01

10

11



19
6

Z-Index
Map domain of each attribute onto n-bit 
integer

Order of points on Z-curve given by bit-
interleaving the positions on the axes

x = x1x2

y = y1y2

z-index = y1x1y2x2

00 01 10 11

00

01

10

11

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111



19
7

Z-Index
Map domain of each attribute onto n-bit 
integer

Order of points on Z-curve given by bit-
interleaving the positions on the axes

x = x1x2

y = y1y2

z-index = y1x1y2x2

00 01 10 11

00

01

10

11

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111



19
8

Z-Region Partition
Z-curve partitioned into contiguous 
ranges (z-regions)

• Note that these may not be contiguous 
regions in the multidimensional space

Z-regions mapped to leaf nodes of a 
B+tree

• A leaf node contain pointers to records 
whose attribute value locate them within 
the associated Z-region

0 d.2n-1Z-index



19
9

Z-Region Partition
Z-curve partitioned into contiguous 
ranges (z-regions)

• Note that these may not be contiguous 
regions in the multidimensional space

Z-regions mapped to leaf nodes of a 
B+tree

• A leaf node contain pointers to records 
whose attribute value locate them within 
the associated Z-region

0 d.2n-1Z-index



20
0

Z-Region Partition
Z-curve partitioned into contiguous 
ranges (z-regions)

• Note that these may not be contiguous 
regions in the multidimensional space

Z-regions mapped to leaf nodes of a 
B+tree

• A leaf node contain pointers to records 
whose attribute value locate them within 
the associated Z-region

0 d.2n-1Z-index



20
1

Querying UB-Trees
• Multidimensional range query can be 

considered as a k-dimensional rectangle

• Algorithm identifies z-regions that 
intersect with the query rectangle



20
2

Querying UB-Trees
• Multidimensional range query can be 

considered as a k-dimensional rectangle

• Algorithm identifies z-regions that 
intersect with the query rectangle



20
3

Querying UB-Trees
• Multidimensional range query can be 

considered as a k-dimensional rectangle

• Algorithm identifies z-regions that 
intersect with the query rectangle



20
4

Querying UB-Trees
• Multidimensional range query can be 

considered as a k-dimensional rectangle

• Algorithm identifies z-regions that 
intersect with the query rectangle



20
5

Querying UB-Trees
• Multidimensional range query can be 

considered as a k-dimensional rectangle

• Algorithm identifies z-regions that 
intersect with the query rectangle



20
6

Querying UB-Trees
• Multidimensional range query can be 

considered as a k-dimensional rectangle

• Algorithm identifies z-regions that 
intersect with the query rectangle



20
7

Querying UB-Trees
• Multidimensional range query can be 

considered as a k-dimensional rectangle

• Algorithm identifies z-regions that 
intersect with the query rectangle



20
8

Querying UB-Trees
• Multidimensional range query can be 

considered as a k-dimensional rectangle

• Algorithm identifies z-regions that 
intersect with the query rectangle



Bitmap Indexes



21
0

Bitmap indexes
Collection of bit-vectors used to index an attribute

• One bit-vector for each unique attribute value

• One bit for each record

Querying index involves combining bit-vectors with bitwise operators (&, |)
• A 1 in the ith position indicates that record i is a match



21
1

Example
An online homeware vendor sells products p1...p10

• Products p3 and p5 cost £100

• Product p1 costs £200

• Products p2, p7 and p10 cost £300

• Products p4, p6, p8 and p9 cost £400

• Products p1, p4, p5 and p9 are designed for lounges

• Products p5 and p7 are designed for dining rooms

• Products p3, p5, p6 and p10 are designed for kitchens



21
2

Example bitmap index
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

£100 0 0 1 0 1 0 0 0 0 0

£200 1 0 0 0 0 0 0 0 0 0

£300 0 1 0 0 0 0 1 0 0 1

£400 0 0 0 1 0 1 0 1 1 0

Lounge 1 0 0 1 1 0 0 0 1 0

Dining 0 0 0 0 1 0 1 0 0 0

Kitchen 0 0 1 0 1 1 0 0 0 1



21
3

Example bitmap index
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

£100 0 0 1 0 1 0 0 0 0 0

£200 1 0 0 0 0 0 0 0 0 0

£300 0 1 0 0 0 0 1 0 0 1

£400 0 0 0 1 0 1 0 1 1 0

Lounge 1 0 0 1 1 0 0 0 1 0

Dining 0 0 0 0 1 0 1 0 0 0

Kitchen 0 0 1 0 1 1 0 0 0 1

price=£300 Ù room=kitchen 



21
4

Example bitmap index
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

£100 0 0 1 0 1 0 0 0 0 0

£200 1 0 0 0 0 0 0 0 0 0

£300 0 1 0 0 0 0 1 0 0 1

£400 0 0 0 1 0 1 0 1 1 0

Lounge 1 0 0 1 1 0 0 0 1 0

Dining 0 0 0 0 1 0 1 0 0 0

Kitchen 0 0 1 0 1 1 0 0 0 1

price=£300 Ù room=kitchen 

0100001001 & 0010110001 = 0000000001



21
5

Example bitmap index
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

£100 0 0 1 0 1 0 0 0 0 0

£200 1 0 0 0 0 0 0 0 0 0

£300 0 1 0 0 0 0 1 0 0 1

£400 0 0 0 1 0 1 0 1 1 0

Lounge 1 0 0 1 1 0 0 0 1 0

Dining 0 0 0 0 1 0 1 0 0 0

Kitchen 0 0 1 0 1 1 0 0 0 1

price=£300 Ù room=kitchen 

0100001001 & 0010110001 = 0000000001

p10 is matching product



21
6

Compression
• Bit-vectors are typically sparse, with few 1 bits

• Large amount of wasted space

• Run-length encoding of bit-vectors to reduce stored size

• Bitwise operators must be applied to original bit-vectors
• Can decode RLE bit-vectors one run at a time



21
7

Bitmap indexes
Pro

• Efficient answering of partial-match queries

Con
• Requires fixed record numbers

• Changes to data file require changes to bitmap index



Further Reading



21
9

Further Reading
• Chapter 14 of Garcia-Molina et al

• Sections 14.1-14.3

• Next lecture: Multi-key Indexing
• Sections 14.4-14.7



Next Lecture: Relational Algebra


