

Ontology Design Patterns
COMP6256 Knowledge Graphs for AI Systems

Dr Nicholas Gibbins – nmg@ecs.soton.ac.uk

3

Design Patterns
Patterns are general, reusable solutions to
commonly occurring problems

• Concept originated with Christopher
Alexander’s work on architecture

• Popularised in software engineering by
the “gang of four”

• Subject of study by the knowledge
engineering community

4

Design Patterns for the Semantic Web
N-ary relations

• How can we say more about a relation instance?

• How do we represent an ordered sequence of relations?

Value partitions and value sets
• How do we represent a fixed list of values?

Part-whole hierarchies
• How do we represent hierarchies other than the subclass hierarchy?

N-ary Relations

6

Binary Relations
In RDF and OWL, binary relations link two individuals, or an individual and a
value

The properties birthYear and fatherOf are binary relations

Holbein the Elder
birthYear

Holbein the Younger

fatherOf

1460

7

Relations with Additional Information

In some cases, we need to associate additional info with a binary relation
• e.g. certainty, strength, dates

For example, Holbein the Elder’s date of birth is unconfirmed
• He was born in either 1460 or 1465

• How can we represent this uncertainty?

Holbein the Elder

birthYear 1460

1465birthYear

0.6

0.4

certainty

certainty

8

N-ary Relations
N-ary relations link an individual to more than a one value

Possible use cases:

1. A relation needs additional info
e.g. a relation with a rating value

2. Two binary relations are related to each other
e.g. body_temp (high, normal, low), and trend (rising, falling)

3. A relation between several individuals
e.g. someone buys a book from a bookstore

4. Linking from, or to, an ordered list of individuals
e.g. an airline flight visiting a sequence of airports

9

Pattern 1: Reified Relation
To represent additional information about a relation:

• Create a new class to represent the relation

• Individuals of this class are instances of the relation

• Relation class can have additional properties to describe more information about the
relation

A B

C

p

10

Use case 1: additional information
Jack has given the film ‘I Am Legend’ a four-star rating

• We need to represent a quantitative value to describe the rating relation

film

Person

Film

Rating

Jack

I am Legend

rating

Film

Rating

**

The Omega Man

film

rating

11

Use case 1: additional information

Person ⊑ ∀ issuedRating. RatingRelation
RatingRelation ⊑ ∃ ratedObject. Film ⊓ ≤ 1 ratedObject
RatingRelation ⊑ ∀ ratingValue. Rating ⊓ ≤ 1 ratingValue

Jack

I am Legend

issuedRating
ratedObject

ratingValue

RatingRelation

12

Use case 2: different aspects of a relation
Steve has a temperature which is high, but falling

• We need to represent different aspects of the temperature that Steve has

Steve
hasTemperature

Temperature

falling

elevatedtemperatureValue

temperatureTrend

13

Use case 3: no distinguished participant
John buys a “Lenny the Lion” book from orinoco.com for $15 as a birthday gift

• No distinguished subject for the relation

• i.e. no primary relation to convert into a Relation Class as in cases 1 and 2

Source: W3C

John

hasBuyer

hasSeller

hasObject
hasAmount

hasPurpose

orinoco.com

Lenny the Lion

$15

birthday gift

14

Use case 3: no distinguished participant
Purchase ⊑ ∃ hasBuyer. Person ⊓ = 1 hasBuyer
Purchase ⊑ ∃ hasSeller. Company ⊓ = 1 hasSeller
Purchase ⊑ ∃ hasObject. Object
Purchase ⊑ ∀ hasAmount. Quantity ⊓ = 1 hasAmount
Purchase ⊑ ∀ hasPurpose. Purpose

15

Pattern 2: Sequence of arguments
United Airlines, flight 1377 visits the following airports: LAX, DFW, and JFK

• For such an example, we need to represent a sequence of arguments

UA1377

flightSequence

LAX

JFK

DFW

UA1377_1

UA1377_2

UA1377_3

destination

nextSegment
destination

destination
nextSegment

16

Pattern 2: Sequence of arguments
⊤ ⊑ ∀ GlightSequence!. Flight (flightSequence rdfs:domain Flight)

⊤ ⊑ ∀ GlightSequence. FlightSegment (flightSequence rdfs:range FlightSegment)

⊤ ⊑ ≤ 1 GlightSequence (flightSequence is functional)

⊤ ⊑ ∀ nextSegment!. FlightSegment (nextSegment rdfs:domain FlightSegment)

⊤ ⊑ ∀ nextSegment. FlightSegment (nextSegment rdfs:range FlightSegment)

⊤ ⊑ ≤ 1 nextSegment (nextSegment is functional)

⊤ ⊑ ∀ destination!. FlightSegment (destination rdfs:domain FlightSegment)

⊤ ⊑ ∀ destination. Airport (destination rdfs:range Airport)

FlightSegment ⊑ = 1 destination ⊓ ≤ 1 nextSegment
FinalFlightSegment ≡ FlightSegment ⊓ = 0 nextSegment

Value Partitions and Value Sets

18

Descriptive Features
Descriptive features are quite common in ontologies:

• Size = {small, medium, large}

• Risk = {dangerous, risky, safe}

• Health status = {good health, medium health, poor health}

Also called “qualities”, “modifiers” and “attributes”
• A property can have only one value for each feature to ensure consistency

Three main approaches:
• Enumerated individuals (a value set)

• Disjoint classes (a value partition)

• Datatype values (not considered in this lecture)

19

Value Sets
Values of descriptive feature are individuals

20

Value Sets
A health value can be either poor, medium or good:

HealthValue ≡ { poorHealth,mediumHealth, goodHealth }

Poor, medium and good are all different from each other:
poorHealth ≠ mediumHealth
poorHealth ≠ goodHealth

mediumHealth ≠ goodHealth

A healthy person is a person who has some health status which is the value good:
HealthyPerson ≡ Person ⊓ ∃hasHealthStatus. { goodHealth }

21

Notes on Value Sets
Need axioms to set the three health values to be different from each other

• This way, a person cannot have more than one health value at a time

Values cannot be further partitioned
• e.g. cannot have fairly_good_health as a subtype of good_health

Only one set of values is allowed for a feature
• The class HealthValue cannot be equivalent to more than one set of distinct values

• Doing so will cause inconsistencies

22

Value Partitions
Values of descriptive features are disjoint subclasses:

23

Value Partitions
Poor, medium and good are types of health value:

PoorHealth ⊑ HealthValue
MediumHealth ⊑ HealthValue
GoodHealth ⊑ HealthValue

Covering axiom (the only types of health value are poor, medium and good):
HealthValue ≡ PoorHealth ⊔ MediumHealth ⊔ GoodHealth

Poor, medium and good are pairwise disjoint:
PoorHealth ⊓ MediumHealth ≡ ⊥
PoorHealth ⊓ GoodHealth ≡ ⊥

MediumHealth ⊓ GoodHealth ≡ ⊥

A healthy person is a person who has some health status which is an instance of good
HealthyPerson ≡ Person ⊓ ∃hasHealthStatus. GoodHealth

24

Value Partitions
The instance JohnsHealth can be made anonymous

25

Notes on Value Partitions
Values can be further partitioned

• Simply add subclasses to the value classes

Can have alternative partitions of the same feature

OWL 2 contains specific support for defining disjoint unions
𝐶 ≡ 𝐶" ⊔ 𝐶# ⊔⋯⊔ 𝐶$

𝐶" ⊓ 𝐶# ≡ ⊥
𝐶" ⊓ 𝐶% ≡ ⊥

…
𝐶$!" ⊓ 𝐶$ ≡ ⊥

Part-Whole Hierarchies

27

Meronymies (part-whole relations)
Taxonomies are not the only hierarchical relation that we wish to model

• A spark plug isn’t a kind of engine (class-instance)

• A spark plug is a part of an engine

28

Simple Part-Whole Representation
We need two properties:

• partOf (a transitive property)

• directPartOf (a subproperty of partOf)

part of ∘ partOf ⊑ partOf
directPartOf ⊑ partOf

29

Part-Whole Hierarchies
Represent part-whole relationships between classes using existential restrictions:

Every spark plug is a direct part of some engine: SparkPlug ⊑ ∃directPartOf. Engine

Every engine is a direct part of some car: Engine ⊑ ∃directPartOf. Car

Every wheel is a direct part of some car: Wheel ⊑ ∃directPartOf. Car

30

Defining Classes of Parts
Extend the ontology with classes of parts for each level, so that the reasoner can
automatically derive a class hierarchy:

A car part is a part of some car: CarPart ≡ ∃partOf. Car

A direct car part is a direct part of some car: DirectCarPart ≡ ∃directPartOf. Car

An engine part is a part of some engine: EnginePart ≡ ∃partOf. Engine

A reasoner will infer that EnginePart ⊑ CarPart (but not EnginePart ⊑ DirectCarPart)

31

Fault Location
Once we have a meronymy, we can use it to inherit features within that hierarchy

For example, a reasoner could infer that a fault in a part is a fault in a whole
• Need a new property for the location of a fault: hasLocus
• Need a new class for faults: Fault

We can then define general types of located faults:

FaultInCar ≡ Fault ⊓ ∃hasLocus. CarPart
FaultInEngine ≡ Fault ⊓ ∃hasLocus. EnginePart

32

Fault Location
Now we can define specific types of located fault:

DirtySparkPlug ⊑ Fault ⊓ ∃hasLocus. SparkPlug
FlatTyre ⊑ Fault ⊓ ∃hasLocus.Wheel

The definition of the hierarchy allows a reasoner to infer that:

DirtySparkPlug ⊑ FaultInCar
DirtySparkPlug ⊑ FaultInEngine

FlatTyre ⊑ FaultInCar

But not:
FlatTyre ⊑ FaultInEngine

Further Reading

34

SWBP Notes
Defining N-ary Relations on the Semantic Web
http://www.w3.org/TR/swbp-n-aryRelations

Representing Specified Values in OWL
http://www.w3.org/TR/swbp-specified-values

Simple part-whole relations in OWL Ontologies
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/

