

Web Ontology Language (OWL)
COMP6256 Knowledge Graphs for AI Systems

Dr Nicholas Gibbins – nmg@ecs.soton.ac.uk

3

Introducing OWL
For many, RDF Schema is a sufficiently
expressive ontology language

However, there are use cases which
require a more expressive formalism:

• Instance classification

• Consistency checking

• Subsumption reasoning

OWL is a way of encoding DL axioms as
RDF triples such that the semantics of the
DL axioms are broadly compatible with
RDF(S)

4

OWL Feature Summary
• Necessary and sufficient conditions for class membership

• Property restrictions
• Local range, cardinality, value constraints

• Equivalence and identity relations

• Property characteristics
• Transitive, symmetric, functional

• Complex classes
• Set operators, enumerated classes, disjoint classes

5

OWL Versions
Two versions of OWL:

• OWL 1.0 (became Recommendation on 10 Feb 2004)

• OWL 2 (became Recommendation on 29 Oct 2009)

OWL 2 is more expressive than OWL 1.0, and takes advantage of developments in DL
reasoning techniques in the intervening time

We will initially concentrate on OWL 1.0

6

OWL 1.0 Species
Different subsets of OWL features give rise to the following sublanguages (colloquially
known as species):

• OWL Lite

• OWL DL

• OWL Full

“There is a tradeoff between the expressiveness of a representation language and the
difficulty of reasoning over the representations built using that language.”

Brachman, R. J., and H. J. Levesque. (1984). The tractability of subsumption in frame-based description languages. In Proceedings of the 4th
National Conference of the American Association for Artificial Intelligence (AAAI-84). Austin, TX, pp. 34-37.

7

OWL 1.0 Species

RDF(S)

OWL Lite

OWL DL

OWL Full

Increasing
expressivity

Increasing
complexity

8http://www.cs.man.ac.uk/~ezolin/dl/

9

OWL Lite
Description Logic-based

• SHIF(D)

• Satisfiability is ExpTime-complete

Less complex reasoning at the expense of less expressive language
• No enumerated classes, set operators, or disjoint classes

• Restricted cardinality restrictions
(values of 0 or 1 – required, permitted and excluded)

• No value restrictions

• equivalentClass/subClassOf cannot be applied to class expressions

10

OWL DL
Description Logic-based

• SHOIN(D)

• Complete and decidable

• Higher worst-case complexity than OWL Lite – NExpTime-complete

Supports all OWL constructs, with some restrictions
• Properties that take datatype values cannot be marked as inverse functional

• Classes, properties, individuals and datatype values are disjoint

11

OWL Full
No restrictions on use of language constructs

• All OWL DL and RDFS constructs

• Potentially undecidable

OWL 1.0 Features and Syntax

13

Ontology header
<> rdf:type owl:Ontology ;

owl:versionInfo “1.4” ;
rdfs:comment “An example ontology” ;
owl:imports <http://example.org/base/> .

owl:versionInfo – ontology version number, etc

owl:priorVersion – specified ontology is a previous version of this on

owl:backwardCompatibleWith – specified ontology is a previous version of this one, and
that this is compatible with it

owl:incompatibleWith –specified ontology is a previous version of this one, but that
this is incompatible with it

14

OWL class types
owl:Class

• Distinct from rdfs:Class – needed for OWL Lite/DL

owl:Thing (⊤)
• The class that includes everything

owl:Nothing (⊥)
• The empty class

owl:DeprecatedClass

• Used to indicated that a class is deprecated and should not be used

15

OWL property types
owl:ObjectProperty

• The class of resource-valued properties

owl:DatatypeProperty

• The class of literal-valued properties

owl:AnnotationProperty

• Used to type properties which annotate classes and properties (needed for OWL Lite/DL)

• Any triples whose predicates are typed as annotation properties are ignored by OWL
reasoners

owl:DeprecatedProperty

• Used to indicated that a property is deprecated and should not be used

16

OWL versus RDF Schema
Recall that the semantics of a description logic is specified by interpretation functions
which map:

• Instances to members of the domain of discourse

• Classes to subsets of the domain of discourse

• Properties to sets of pairs drawn from the domain of discourse

Reflexive definitions of RDF Schema means that some resources are treated as both
classes and instances, or instances and properties

• Ambiguous semantics for these resources

• Can’t tell from context whether they’re instances or classes

• Can’t select the appropriate interpretation function

The introduction of owl:Class, owl:ObjectProperty and owl:DatatypeProperty
eliminates this ambiguity

17

OWL restrictions
Class expressions formed by constraints on properties:

• Local cardinality constraints
≤ 𝑛 𝑅, ≥ 𝑛 𝑅, = 𝑛 𝑅

• Local range constraints
∃𝑅. 𝐶, ∀𝑅. 𝐶

• Local value constraints
∃𝑅. {𝑥}

Common triple format for restrictions

[rdf:type owl:Restriction ;
owl:onProperty <property URI> ;
constraint expression]

18

Local cardinality constraints
Defines a class based on the number of values taken by a property

owl:minCardinality (≥ 𝑛 𝑅)
• “property R has at least n values”

owl:maxCardinality (≤ 𝑛 𝑅)
• “property R has at most n values”

owl:cardinality (= 𝑛 𝑅)
• “property R has exactly n values”

OWL Lite has restricted cardinalities – 𝑛 ∈ {0,1}

19

Example: Local cardinality constraint
Single malt whiskies are whiskies which are distilled by one and only one thing

𝑆𝑖𝑛𝑔𝑙𝑒𝑀𝑎𝑙𝑡𝑊ℎ𝑖𝑠𝑘𝑦 ≡ 𝑊ℎ𝑖𝑠𝑘𝑦 ⊓ = 1. 𝑑𝑖𝑠𝑡𝑖𝑙𝑙𝑒𝑑𝐵𝑦

ont:SingleMaltWhisky rdf:type owl:Class ;
owl:equivalentClass [rdf:type owl:Class ;

owl:intersectionOf
(ont:Whisky

[rdf:type owl:Restriction ;
owl:onProperty ont:distilledBy ;
owl:cardinality 1])] .

20

Local range constraints
Defines a class based on the type of property values

Distinct from global range constraint (rdfs:range) in RDF Schema

owl:someValuesFrom (∃𝑅. 𝐶)
• “there exists a value for property R of type C”

owl:allValuesFrom (∀𝑅. 𝐶)
• “property R has only values of type C”

Can only be used with named classes or datatypes in OWL Lite

21

Example: Existential restriction
Carnivores are things which eat some things which are animals

Carnivore ≡ ∃eats. Animal

ont:Carnivore rdf:type owl:Class ;
owl:equivalentClass [rdf:type owl:Restriction ;

owl:onProperty ont:eats ;
owl:someValuesFrom ont:Animal] .

22

Example: Universal restriction
Vegetarians are things which eat only things which are plants

Vegetarian ≡ ∀eats. Plant

ont:Vegetarian rdf:type owl:Class ;
owl:equivalentClass [rdf:type owl:Restriction ;

owl:onProperty ont:eats ;
owl:allValuesFrom ont:Plant] .

23

Local value constraints
Defines a class based on the existence of a particular property value

owl:hasValue (∃𝑅. {𝑥})
• “property R has a value which is X”

Cannot be used in OWL Lite

24

Green things are things which are coloured green

GreenThing ≡ ∃hasColour. {green}

ont:GreenThing rdf:type owl:Class ;
owl:equivalentClass [rdf:type owl:Restriction ;

owl:onProperty ont:hasColour ;
owl:hasValue ont:green] .

Example: Local value constraint

25

Set constructors
owl:intersectionOf (𝐶 ⊓ 𝐷)

owl:unionOf (𝐶 ⊔ 𝐷)

owl:complementOf (¬𝐶)

Restrictions on use with OWL Lite
• owl:unionOf and owl:complementOf cannot be used

• owl:intersectionOf can be used with named classes (not bNodes) and OWL restrictions
only

26

Example: Set constructors
GreenApple ≡ Apple ⊓ ∃hasColour. {green}

ont:GreenApple rdf:type owl:Class ;
owl:equivalentClass [owl:intersectionOf

(ont:Apple
[rdf:type owl:Restriction ;

owl:onProperty ont:hasColour ;
owl:hasValue ont:green])] .

27

Equivalence and identity relations
Useful for ontology mapping

owl:sameAs (MorningStar = EveningStar)

owl:equivalentClass (𝐶 ≡ 𝐷)

owl:equivalentProperty (𝑅 ≡ 𝑆)

ont:morningStar rdf:type owl:Thing ;
owl:sameAs ont:eveningStar

28

Non-equivalence relations
owl:differentFrom

• Can be used to specify a limited unique name assumption

ont:HarryCorbett rdf:type owl:Thing ;
owl:differentFrom ont:HarryHCorbett

OWL (and DLs in general) make the Open World Assumption
• Knowledge of world is incomplete

• If something cannot be proven true, then it isn’t assumed to be false

29

Non-equivalence relations
owl:AllDifferent and owl:distinctMembers
• Used to specify a group of mutually distinct individuals

[rdf:type owl:AllDifferent ;
owl:distinctMembers (ont:John ont:Paul ont:George ont:Ringo)] .

30

Necessary Class Definitions
Primitive / partial classes (⊑)

“If we know that something is a X, then it must fulfill the conditions...”

Defined using rdfs:subClassOf:

Person ⊑ ∃hasBirthdate. ⊤

ont:Person rdf:type owl:Class ;
rdfs:subClassOf [rdf:type owl:Restriction ;

owl:onProperty ont:hasBirthdate ;
owl:SomeValuesFrom owl:Thing] .

31

Sufficient Class Definitions
Describes a subset of the class (⊒)

“If we know that something has this property, then it belongs to this class...”

Defined using rdfs:subClassOf – in the other direction

Person ⊒ ∃hasNationalInsuranceNumber. ⊤

32

Necessary and Sufficient Class Definitions
Defined / complete classes (≡)

“If something fulfills the conditions..., then it is an X."

Defined using owl:equivalentClass:

Student ≡ Person ⊓ ∃isEnrolledAt. University

Note: It will be rather difficult, if not impossible, to give conditions that are both
sufficient and necessary for a class that is as complex as Person

33

Property types - Inverse
Defines a property as the inverse of another property

(𝑅 ≡ 𝑆 −
)

ont:hasAuthor rdf:type owl:ObjectProperty ;
owl:inverseOf ont:wrote .

34

Property types - Symmetric
A property R is symmetric if the following condition holds:

∀𝑥∀𝑦 𝑥, 𝑦 ∈ 𝑅! ⟺ 𝑦, 𝑥 ∈ 𝑅!

ont:hasSibling rdf:type owl:SymmetricProperty .

In DL notation: 𝑅 ≡ 𝑅" (symmetric properties are their own inverses)

35

Property types – Transitive
A property R is transitive if the following condition holds:

∀𝑥∀𝑦∀𝑧 𝑥, 𝑦 ∈ 𝑅! ∧ 𝑦, 𝑧 ∈ 𝑅! ⇒ 𝑥, 𝑧 ∈ 𝑅!

ont:hasAncestor rdf:type owl:TransitiveProperty .

In DL notation: 𝑅 ⊑ 𝑅#

36

Property types – Functional
A property R is functional if the following condition holds:

∀𝑥∀𝑦∀𝑧 𝑥, 𝑦 ∈ 𝑅! ∧ 𝑥, 𝑧 ∈ 𝑅! ⇒ 𝑦 = 𝑧

ont:hasNINumber rdf:type owl:FunctionalProperty .

(everyone has only one NI number)

(everyone has only one birthdate)

(but: people may have several means of identification)

37

Property types – Inverse Functional
A property R is inverse functional if the following condition holds:

∀𝑥∀𝑦∀𝑧 𝑦, 𝑥 ∈ 𝑅! ∧ 𝑧, 𝑥 ∈ 𝑅! ⇒ 𝑦 = 𝑧

ont:hasNINumber rdf:type owl:InverseFunctionalProperty .

(people with the same NI number are the same person)

(but: many people have the same birthdate)

Cannot be used with owl:DatatypeProperty in OWL Lite/DL

38

Disjoint classes
owl:disjointWith

• members of one class cannot also be members of some specified other class

ont:Duck rdf:type owl:Class ;
owl:disjointWith ont:Goose .

In DL notation: Duck ⊓ Goose ≡ ⊥

• Cannot be used in OWL Lite

39

Enumerated classes
Defines a class as a direct enumeration of its members
• owl:oneOf (𝐶 ≡ {𝑎, 𝑏, 𝑐})

ont:Beatles rdf:type owl:Class ;
owl:oneOf (ont:John ont:Paul ont:George ont:Ringo) .

• Cannot be used in OWL Lite

40

Ontology modularisation
owl:imports mechanism for including other ontologies

• Also possible to use terms from other ontologies without explicitly importing them

• Importing requires certain entailments, whereas simple use does not require (but
also does not prevent) those entailments

41

Ontology modularisation example
Ontology 1 (ont1) contains:

BBB rdfs:subClassOf AAA .

Ontology-2 (ont2) contains:

ont2 owl:imports ont1 .
CCC rdfs:subClassOf BBB .

Ontology-2 must entail:

CCC rdfs:subClassOf AAA

42

Ontology modularisation example
Ontology 1 (ont1) contains:
BBB rdfs:subClassOf AAA .

Ontology-3 (ont3) contains:
CCC rdfs:subClassOf ont1:BBB .

Ontology-3 does not necessarily entail
CCC rdfs:subClassOf ont1:AAA .

OWL 2

44

From OWL 1 to OWL 2
OWL 1 design based on contemporary understanding of techniques for decidable,
sound and complete reasoning in description logics

Our understanding has improved since 2004

Some things that looked intractable have been shown to be possible

45

From OWL 1 to OWL 2
Changes between 1 and 2 fall into the following categories:

• Syntactic sugar (making it easier to say things we could already say)

• Constructs for increased expressivity

• Datatype support

• Metamodelling

• Annotation

46

Syntactic Sugar: Disjoint Classes
OWL 1 lets us state that two classes are disjoint (owl:disjointWith)

OWL 2 lets us state that a set of classes are pairwise disjoint

[rdf:type owl:AllDisjointClasses ;
owl:members (ont:Duck ont:Goose ont:Swan)] .

In DL notation:
Duck ⊓ Goose ≡ ⊥
Duck ⊓ Swan ≡ ⊥
Goose ⊓ Swan ≡ ⊥

47

Syntactic Sugar: Disjoint Union
Allows us to define a class as the union of a number of other classes, all of which are
pairwise disjoint

𝐶 ≡ 𝐶2 ⊔ 𝐶3 ⊔⋯⊔ 𝐶4
𝐶2 ⊓ 𝐶3 ≡ ⊥
𝐶2 ⊓ 𝐶5 ≡ ⊥

…
𝐶462 ⊓ 𝐶4 ≡ ⊥

We’ll look at this modelling pattern in a later lecture

48

Example: Disjoint Union
𝑀𝑜𝑛𝑜𝑡𝑟𝑒𝑚𝑒 ≡ 𝑃𝑙𝑎𝑡𝑦𝑝𝑢𝑠 ⊔ 𝐸𝑐ℎ𝑖𝑑𝑛𝑎

𝑃𝑙𝑎𝑡𝑦𝑝𝑢𝑠 ⊓ 𝐸𝑐ℎ𝑖𝑑𝑛𝑎 ≡ ⊥

ont:Monotreme owl:disjointUnionOf (ont:Platypus ont:Echidna) .

49

Syntactic Sugar: Negative Property Assertions
OWL 1 lets us assert property values for an individual

OWL 2 lets us assert that an individual does not have a particular property value

[rdf:type owl:NegativePropertyAssertion ;
owl:sourceIndividual ont:John ;
owl:assertionProperty ont:hasChild ;
owl:targetIndividual ont:Susan] .

50

New Constructs: Self Restriction
Defines a class of individuals which are related to themselves by a given property

[rdf:type owl:Restriction ;
owl:onProperty property ;
owl:hasSelf “true”^^xsd:boolean] .

In DL notation: ∃R. Self

51

Example: Self Restriction
A narcissist is a person who loves themselves

𝑁𝑎𝑟𝑐𝑖𝑠𝑠𝑖𝑠𝑡 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∃𝑙𝑜𝑣𝑒𝑠. 𝑆𝑒𝑙𝑓

ont:Narcissist rdf:type owl:Class ;
owl:equivalentClass

[rdf:type owl:Class ;
owl:intersectionOf (ont:Person

[rdf:type owl:Restriction ;
owl:onProperty ont:loves ;
owl:hasSelf “true”^^xsd:boolean])] .

52

New Constructs: Qualified Cardinality
OWL 1 lets us either specify either the local range of a property, or the number of
values taken by the property

OWL 2 lets us specify both together:

[rdf:type owl:Restriction ;
owl:onProperty ont:hasPart ;
owl:onClass ont:Wheel ;
owl:cardinality 4] .

In DL notation: ∃$% hasPart.Wheel or = 4 hasPart.Wheel

Similar construct for datatype properties

53

New Constructs: Reflexive Properties
Allows us to assert that a property relates every object to itself

A property R is reflexive if the following condition holds:

∀𝑥 𝑥, 𝑥 ∈ 𝑅!

ont:sameAgeAs rdf:type owl:ReflexiveProperty .

54

New Constructs: Irreflexive Properties
Allows us to assert that a property relates no object to itself

A property R is irreflexive if the following condition holds:

∀𝑥 𝑥, 𝑥 ∉ 𝑅!

ont:strictlyTallerThan rdf:type owl:IrreflexiveProperty .

ont:marriedTo rdf:type owl:IrreflexiveProperty .

55

New Constructs: Asymmetric Properties
A property R is asymmetric if the following condition holds:

∀𝑥∀𝑦 𝑥, 𝑦 ∈ 𝑅! ⇒ ⟨𝑦, 𝑥⟩ ∉ 𝑅!

ont:strictlyTallerThan rdf:type owl:AsymmetricProperty .

but:

ont:marriedTo rdf:type owl:SymmetricProperty .

56

New Constructs: Disjoint Properties
We can state that two individuals cannot be related to each other by two different
properties that have been declared disjoint

Two properties R and S are disjoint if the following condition holds:

𝑅! ∩ 𝑆! = ∅

ont:separatedFrom rdf:type owl:ObjectProperty ;
owl:propertyDisjointWith ont:contiguousWith .

Typical examples include antonymic relationships: closeTo – farFrom

57

New Constructs: Property Chain Inclusion
OWL 1 does not let us define a property as a composition of other properties

• Example: hasUncle ≡ hasParent ∘ hasBrother

OWL 2 lets us define such property compositions:

ont:hasUncle rdf:type owl:ObjectProperty ;
owl:propertyChainAxiom (ont:hasParent ont:hasBrother) .

58

New Constructs: Keys
OWL 1 lets us define a property to be functional, so that individuals can be uniquely
identified by values of that property

OWL 2 lets us define uniquely identifying keys that comprise several properties:

ont:Person rdf:type owl:Class ;
owl:hasKey (ont:hasSSN ont:hasBirthDate) .

59

New Constructs: Datatype Restrictions
Allows us to define subsets of datatypes that constrain the range of values allowed by
a datatype

For example, the datatype of integers greater than or equal to 5:

ont:IntGEFive rdf:type owl:Datatype ;
owl:withRestrictions ([rdf:type xsd:minInclusive “5”^^xsd:integer]) .

60

Metamodelling: Punning
OWL 1 required the names used to identify classes, properties, individuals and
datatypes to be disjoint

OWL 2 relaxes this
• The same name (URI) can be used for both a class and an individual

However:
• A name cannot be used for both a class and a datatype

• A name cannot be used for more than one type of property (DataProperty vs ObjectProperty)

61

Example: Punning
ont:Eagle rdf:type owl:Class .
ont:Harry rdf:type ont:Eagle .
ont:Eagle rdf:type ont:EndangeredSpecies .

a:Raptor rdfs:subclassOf a:Bird
a:Eagle rdfs:subclassOf a:Raptor

ont:Eagle rdf:type ont:EndangeredSpecies

ont:Harry rdf:type ont:Eagle

ont:EndangeredSpecies rdfs:subclassOf ont:Species

T-Box

A-Box

T-Box

A-Box

62

Language Profiles
OWL 1 has three dialects: OWL Lite, OWL DL and OWL Full

OWL 2 introduces three profiles with useful computational properties (reasoning,
conjunctive queries):

• OWL 2 EL (PTIME-complete, PSPACE-complete)

• OWL 2 QL (NLOGSPACE-complete, NP-complete)

• OWL 2 RL (PTIME-complete, NP-complete)

• OWL 1 DL (NEXPTIME-complete, decidability open)

Next Lecture: Ontology Engineering

