


RDF Schema and Description 
Logics 
COMP6256 Knowledge Graphs for AI Systems

Dr Nicholas Gibbins – nmg@ecs.soton.ac.uk



3

Using RDF to define RDFS
RDFS is a simple ontology language for use with RDF

RDFS is an RDF vocabulary which contains:

• Classes for defining classes and properties

• Properties for defining basic characteristics of classes and properties
• Global property domains and ranges

• Some ancillary properties
• Defined by, see also



4

Notes on RDF and RDFS namespaces
Most terms in RDF Schema are defined as part of the RDFS namespace

• http://www.w3.org/2000/01/rdf-schema# , abbreviated here as rdfs:

Two terms are defined as part of the RDF namespace: rdf:type and rdf:Property

• http://www.w3.org/1999/02/22-rdf-syntax-ns# , abbreviated as rdf:

This is a historical accident, but can trip up the unwary

Be careful when using these terms in SPARQL queries!



5

RDF Schema class definitions
We wish to define the class Person:

ex:Person rdfs:Class
rdf:type

ex:Person rdf:type rdfs:Class .



6

RDF Schema class definitions
Employee is a subclass of Person

ex:Employee rdfs:Class
rdf:type

ex:Person

rdfs:subClassOf

ex:Employee rdf:type rdfs:Class ; 
rdfs:subClassOf ex:Person . 



7

RDF Schema class semantics
rdfs:subClassOf is transitive:

(A rdfs:subClassOf B) and (B rdfs:subClassOf C) implies (A rdfs:subClassOf C)

Ex:PartTime
Employee

ex:Employee

rdfs:subClassOf

ex:Person

rdfs:subClassOf

rdfs:subClassOf



8

RDF Schema class semantics
rdfs:subClassOf is reflexive

• All classes are subclasses of themselves

ex:Person rdfs:subClassOf



9

RDF Schema class semantics
rdf:type distributes over rdf:subClassOf:

(A rdfs:subClassOf B) and (C rdf:type A) implies (C rdf:type B)

John Smithex:Employee
rdf:type

ex:Person

rdfs:subClassOf

rdf:type



10

RDF Schema property definitions
We wish to define the property worksFor:

ex:WorksFor rdf:Property
rdf:type

ex:WorksFor rdf:type rdf:Property .



11

RDF Schema property definitions
Important difference between RDF and object-oriented programming languages
• OO languages define classes in terms of the properties they have
• RDF defines properties in terms of the classes whose instances they relate to 

each other

The domain of a property is the class that the property runs from

The range of a property is the class that a property runs to



12

RDF Schema property definitions
The property worksFor relates objects of class Employee to objects of class Company

ex:worksFor rdf:type rdf:Property ;
rdfs:domain ex:Employee ;
rdfs:range ex:Company .

ex:worksFor rdf:Property
rdf:type

ex:Employee

ex:Company

rdfs:domain

rdfs:range



13

RDF Schema property definitions
Specialisation exists in properties as well as classes

• worksFor is a subproperty of affiliatedTo

ex:worksFor rdf:type rdf:Property ;
rdfs:subPropertyOf ex:affiliatedTo

ex:worksFor rdf:Property
rdf:type

ex:affiliatedTo

rdfs:subPropertyOf



14

RDF Schema property semantics
rdfs:subPropertyOf is transitive and reflexive

• Entailment of superproperties

John Smith Example Inc.
ex:worksFor

ex:affiliatedTo

rdfs:subPropertyOf



15

RDF Schema property semantics
Type entailments from range and domain constraints

John Smith Example Inc.
ex:worksFor

rdfs:domain

ex:Employee ex:Company
rdfs:range

rdf:type rdf:type



16

RDF Schema predefined classes
• rdfs:Class

• rdf:Property

• rdfs:Resource

• rdfs:Literal

• rdfs:Datatype

• rdf:XMLLiteral

rdfs:subClassOf

rdfs:Resource

rdfs:Class rdfs:Literal

rdfs:Datatype rdf:XMLLiteral

rdf:Property

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

xsd:String

xsd:integer

rdfs:subClassOf rdfs:subClassOf

rdf:type



17

RDF Schema ancillary features
rdfs:label is used to give a human-readable name for a resource

<#person-01269> rdfs:label “John Smith” .

rdfs:comment is used to give a human-readable description for a resource

<#Employee> rdfs:comment “A person who works.” .

rdfs:seeAlso is used to indicate a resource which can be retrieved to give more 
information about something

rdfs:isDefinedBy indicates a resource which is responsible for the definition of 
something (a subproperty of rdfs:seeAlso)



Description Logics



19

Why do we need Description Logics?

19

RDF Schema isn’t sufficient for all tasks
• There are things you can’t express

• There are things you can’t infer



20

Description Logics

20

A family of knowledge representation formalisms
• A subset of first order predicate logic (FOPL)
• Decidable – trade-off of expressivity against algorithmic complexity
• Well understood – derived from work in the mid-80s to early 90s
• Model-theoretic formal semantics 
• Simpler syntax than FOPL

Used as the foundation for the web ontology language OWL

This module assumes that you're familiar with FOPL.

If you need a refresher, the following resource is available:
• Johnsonbaugh, R. (2014) Discrete Mathematics, 7th ed. Chapter 1. (ebook via library)



21

Description Logics

21

Description logics restrict the predicate types that can be used
• Unary predicates denote concept membership

𝑃𝑒𝑟𝑠𝑜𝑛(𝑥)

• Binary predicates denote roles between instances

ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑(𝑥, 𝑦)

Note on terminology: the DL literature uses slightly different terms to those in RDFS
• Class and concept are interchangeable terms

• Role, relation and property are interchangeable terms



22

Defining ontologies with Description Logics

22

Describe classes (concepts) in terms of their necessary and sufficient conditions

Consider an attribute A of a class C:

• Attribute A is a necessary condition for membership of C
• If an object is an instance of C, then it has A

• Attribute A is a sufficient condition for membership of C
• If an object has A, then it is an instance of C



23

Description Logic Reasoning Tasks

23

Satisfaction
• “Can this class have any instances?"

Subsumption
• "Is every instance of class C necessarily an instance of class D?"

Classification
• "What classes is this object an instance of?"



24

Concepts as sets

24

w

B

v

x

y

z

A

R



Syntax



26

Expressions

26

Description logic expressions consist of:

• Concept and role descriptions:
• Atomic concepts: Person

• Atomic roles: hasChild

• Complex concepts: “person with two living parents”

• Complex roles: “has parent’s brother” (i.e. "has uncle")

• Axioms that make statements about how concepts or roles are related to each other:
• “Every person with two living parents is thankful”

• “hasUncle is equivalent to has parent’s brother”



27

Concept Constructors

27

Used to construct complex concepts:
• Boolean concept constructors ¬𝐶 𝐶 ⊔ 𝐷 𝐶 ⊓ 𝐷
• Restrictions on role successors ∀𝑅. 𝐶 ∃𝑅. 𝐶
• Number/cardinality restrictions ≤ 𝑛 𝑅 ≥ 𝑛 𝑅 = 𝑛𝑅
• Nominals (singleton concepts) {𝑥}
• Universal concept, top ⊤
• Contradiction, bottom ⊥



28

Role Constructors

28

Used to construct complex roles:
• Concrete domains (datatypes)

• Inverse roles 𝑅!

• Role composition 𝑅 ∘ 𝑆
• Transitive roles 𝑅"



29

OWL and Description Logics

29

• Not every description logic supports all constructors 

• More constructors = more expressive = higher complexity

• For example, OWL DL is equivalent to the logic 𝒮ℋ𝒪ℐ𝒩(𝐷)
• Atomic concepts and roles

• Boolean operators

• Universal, existential restrictions, number restrictions

• Role hierarchies

• Nominals

• Inverse and transitive roles (but not role composition)



30

Boolean Concept Constructors: Intersection

Child ⊓ Happy
The class of things which are both 
children and happy

Read as “Child AND Happy”

HappyChild



31

Boolean Concept Constructors: Union

Rich ⊔ Famous
The class of things which are rich or famous 
(or both)

Read as “Rich OR Famous”

FamousRich



32

Boolean Concept Constructors: Complement

¬Happy
The class of things which are not happy

Read as “NOT Happy”

Happy



33

Restrictions: Existential

∃hasPet. Cat
The class of things which have some pet that is a cat

• must have at least one pet

Read as “hasPet SOME Cat”
fluffy

Dog

felix

fido

john

jane

Cat

hasPet

jenny



34

john

jane

Restrictions: Existential

∃hasPet. Cat
The class of things which have some pet that is a cat

• must have at least one pet

Read as “hasPet SOME Cat”
fluffy

Dog

felix

fido

Cat

hasPet

jenny



35

Restrictions: Universal

∀hasPet. Cat
The class of things all of whose pets are cats 

• Or, which only have pets that are cats

• includes those things which have no pets

Read as “hasPet ONLY Cat”

Dog

fluffy

felix

fido

jane

Cat

hasPet

john

jenny



36

john

jenny

Restrictions: Universal

∀hasPet. Cat
The class of things all of whose pets are cats 

• Or, which only have pets that are cats

• includes those things which have no pets

Read as “hasPet ONLY Cat”

Dog

fluffy

felix

fido

jane

Cat

hasPet



37

john

jenny

fluffy

felix

fido

Restrictions: Universal

∀hasPet. Cat
The class of things all of whose pets are cats 

• Or, which only have pets that are cats

• includes those things which have no pets

Read as “hasPet ONLY Cat”

Dog

jane

Cat

hasPet



38

Restrictions: Number

= 1 hasPet
The class of things which have exactly one pet

fluffy

Dog

felix

john

fido

jane

Cat

hasPet

jenny



39

john

Restrictions: Number

= 1 hasPet
The class of things which have exactly one pet

fluffy

Dog

felix

fido

jane

Cat

hasPet

jenny



40

Restrictions: Number

≥ 2 hasPet
The class of things which have at least two pets

fluffy

Dog

felix

john

fido

jane

Cat

hasPet

jenny



41

jane

Restrictions: Number

≥ 2 hasPet
The class of things which have at least two pets

fluffy

Dog

felix

john

fido

Cat

hasPet

jenny



42

Knowledge Bases

42

A description logic knowledge base (KB) has two parts:

• TBox: terminology
• A set of axioms describing the structure of the domain 

(i.e., a conceptual schema)

• Concepts, roles

• ABox: assertions
• A set of axioms describing a concrete situation (data)

• Instances



43

TBox Axioms

43

Concept inclusion 
(C is a subclass of D)

𝐶 ⊑ 𝐷

Concept equivalence 
(C is equivalent to D)

𝐶 ≡ 𝐷

Role inclusion 
(R is a subproperty of S)

𝑅 ⊑ 𝑆

Role equivalence 
(R is equivalent to S)

𝑅 ≡ 𝑆

Role transitivity 
(R composed with itself is a 
subproperty of R)

𝑅8 ⊑ 𝑅



44

Revisiting Necessary and Sufficient Conditions

44

“Attribute A is a necessary/sufficient condition for membership of C”

Instead of talking directly about A, we can make a class expression (using the concept 
constructors) that represents the class of things with attribute A – call it D

• Membership of D is necessary/sufficient for membership of C



45

Revisiting Necessary and Sufficient Conditions

45

Membership of D is a necessary condition for membership of C

𝐶 ⊑ 𝐷
Membership of D is a sufficient condition for membership of C

𝐶 ⊒ 𝐷
Membership of D is both a necessary and a sufficient condition for membership of C

𝐶 ≡ 𝐷



46

Revisiting Necessary and Sufficient Conditions

46

Some common terminology:

𝐶 ⊑ 𝐷
• C is a primitive or partial class

𝐶 ≡ 𝐷
• C is a defined class

(you’ll see these terms used in the Protégé OWL Tutorial)



47

ABox Axioms

47

Concept instantiation

𝐶(𝑥)
• x is of type C

Role instantiation

𝑅(𝑥, 𝑦)
• x has R of y



48

Axiom Examples

48

Every person is either living or dead

Every happy child has a loving parent

Every child who eats only cake is 
unhealthy

No elephants can fly

A mole is a sauce from Mexico that 
contains chili

All Englishmen are mad



49

Axiom Examples

49

Every person is either living or dead Person ⊑ Living ⊔ Dead

Every happy child has a loving parent Child ⊓ Happy ⊑ ∃hasParent. Loving

Every child who eats only cake is 
unhealthy

Child ⊓ ∀eats. Cake ⊓ ∃eats. Cake ⊑ ¬Healthy

No elephants can fly Elephant ⊓ FlyingThing ≡ ⊥

A mole is a sauce from Mexico that 
contains chili

Mole ≡
Sauce ⊓ ∃hasOrigin. Mexico ⊓
∃hasIngredient. Chili

All Englishmen are mad ∃bornIn. England ⊓ Male ⊑ Mad



50

Tips for Description Logic Axioms

50

• No single ‘correct’ answer - different modelling choices

• Break sentence down into pieces
• e.g. “successful man”, “spicy ingredient” etc

• Look for nouns and adjectives (concepts)

• Look for verb phrases (roles)

• Look for indicators of axiom type:
• “Every X is Y” - inclusion axiom

• “X is Y” - equivalence axiom

• Remember that ∀R.C is satisfied by instances which have no value for R





Semantics



53

Description Logics and Predicate Logic

53

Description Logics are a subset of first order Predicate Logic with a simplified syntax

Every DL expression can be converted into an equivalent FOPL expression



54

Description Logics and Predicate logic

54

Every concept 𝐶 is translated to a formula 𝜙b(𝑥)
Every role 𝑅 is translated to a formula 𝜙c(𝑥, 𝑦)
Boolean concept constructors:

𝜙¬b 𝑥 = ¬𝜙b 𝑥
𝜙b⊔d 𝑥 = 𝜙b 𝑥 ∨ 𝜙d 𝑥
𝜙b⊓d 𝑥 = 𝜙b 𝑥 ∧ 𝜙d(𝑥)

Restrictions:

𝜙∃c.b 𝑥 = ∃𝑦. 𝜙c 𝑥, 𝑦 ∧ 𝜙b 𝑦
𝜙∀c.b 𝑥 = ∀𝑦. 𝜙c 𝑥, 𝑦 ⇒ 𝜙b(𝑦)



55

Description Logics and Predicate logic

55

Axioms are translated as follows:

Concept inclusion 𝐶 ⊑ 𝐷
∀𝑥. 𝜙b 𝑥 ⇒ 𝜙d(𝑥)

Concept equivalence 𝐶 ≡ 𝐷
∀𝑥. 𝜙b 𝑥 ⇔ 𝜙d(𝑥)



56

Example

56

“Every child who eats cake is happy”



57

Example

57

“Every child who eats cake is happy”

Child ⊓ ∃eats. Cake ⊑ Happy



58

Example

58

“Every child who eats cake is happy”

Child ⊓ ∃eats. Cake ⊑ Happy

∀𝑥 𝜙befgh⊓∃ijkl.bjmi 𝑥 ⇒ 𝜙njoop 𝑥



59

Example

59

“Every child who eats cake is happy”

Child ⊓ ∃eats. Cake ⊑ Happy

∀𝑥 𝜙befgh⊓∃ijkl.bjmi 𝑥 ⇒ 𝜙njoop 𝑥



60

Example

60

“Every child who eats cake is happy”

Child ⊓ ∃eats. Cake ⊑ Happy

∀𝑥 𝜙befgh⊓∃ijkl.bjmi 𝑥 ⇒ 𝜙njoop 𝑥



61

Example

61

“Every child who eats cake is happy”

Child ⊓ ∃eats. Cake ⊑ Happy

∀𝑥 𝜙befgh⊓∃ijkl.bjmi 𝑥 ⇒ 𝜙njoop 𝑥



62

Example

62

“Every child who eats cake is happy”

Child ⊓ ∃eats. Cake ⊑ Happy

∀𝑥 𝜙befgh⊓∃ijkl.bjmi 𝑥 ⇒ 𝜙njoop 𝑥

∀𝑥 𝜙befgh 𝑥 ∧ 𝜙∃ijkl.bjmi 𝑥 ⇒ 𝜙njoop 𝑥



63

Example

63

“Every child who eats cake is happy”

Child ⊓ ∃eats. Cake ⊑ Happy

∀𝑥 𝜙befgh⊓∃ijkl.bjmi 𝑥 ⇒ 𝜙njoop 𝑥

∀𝑥 𝜙befgh 𝑥 ∧ 𝜙∃ijkl.bjmi 𝑥 ⇒ 𝜙njoop 𝑥



64

Example

64

“Every child who eats cake is happy”

Child ⊓ ∃eats. Cake ⊑ Happy

∀𝑥 𝜙befgh⊓∃ijkl.bjmi 𝑥 ⇒ 𝜙njoop 𝑥

∀𝑥 𝜙befgh 𝑥 ∧ 𝜙∃ijkl.bjmi 𝑥 ⇒ 𝜙njoop 𝑥



65

Example

65

“Every child who eats cake is happy”

Child ⊓ ∃eats. Cake ⊑ Happy

∀𝑥 𝜙befgh⊓∃ijkl.bjmi 𝑥 ⇒ 𝜙njoop 𝑥

∀𝑥 𝜙befgh 𝑥 ∧ 𝜙∃ijkl.bjmi 𝑥 ⇒ 𝜙njoop 𝑥

∀𝑥 𝜙befgh 𝑥 ∧ ∃𝑦 𝜙ijkl 𝑥, 𝑦 ∧ 𝜙bjmi 𝑦 ⇒ 𝜙njoop(𝑥)



66

Example

66

“Every child who eats cake is happy”

Child ⊓ ∃eats. Cake ⊑ Happy

∀𝑥 𝜙befgh⊓∃ijkl.bjmi 𝑥 ⇒ 𝜙njoop 𝑥

∀𝑥 𝜙befgh 𝑥 ∧ 𝜙∃ijkl.bjmi 𝑥 ⇒ 𝜙njoop 𝑥

∀𝑥 𝜙befgh 𝑥 ∧ ∃𝑦 𝜙ijkl 𝑥, 𝑦 ∧ 𝜙bjmi 𝑦 ⇒ 𝜙njoop(𝑥)



67

Description Logic Semantics

67

Δ is the domain (non-empty set of individuals)

Interpretation function ⋅ℐ (or 𝑒𝑥𝑡()) maps:

• Concept expressions to their extensions 

(set of instances of that concept, subsets of Δ)

• Roles to subsets of Δ×Δ
• Individuals to elements of Δ

Examples:

•𝐶ℐ is the set of members of 𝐶
• 𝐶 ⊔ 𝐷 ℐ

is the set of members of either 𝐶 or 𝐷



68

Description Logic Semantics

68

Syntax Semantics Notes

𝐶 ⊓ 𝐷 ℐ 𝐶ℐ ∩ 𝐷ℐ Conjunction

𝐶 ⊔ 𝐷 ℐ 𝐶ℐ ∪ 𝐷ℐ Disjunction

¬𝐶 ℐ Δ\Cℐ Complement

∃𝑅. 𝐶 ℐ {𝑥|∃𝑦 . 𝑥, 𝑦 ∈ 𝑅ℐ ∧ 𝑦 ∈ 𝐶ℐ} Existential

∀𝑅. 𝐶 ℐ {𝑥|∀𝑦 𝑥, 𝑦 ∈ 𝑅ℐ ⇒ 𝑦 ∈ 𝐶ℐ} Universal

≥ 𝑛 𝑅 ℐ {𝑥|# 𝑦 𝑥, 𝑦 ∈ 𝑅ℐ ≥ 𝑛} Min cardinality

≤ 𝑛 𝑅 ℐ {𝑥|# 𝑦 𝑥, 𝑦 ∈ 𝑅ℐ ≤ 𝑛} Max cardinality

= 𝑛 𝑅 ℐ {𝑥|# 𝑦 𝑥, 𝑦 ∈ 𝑅ℐ = 𝑛} Exact cardinality

⊥ ℐ ∅ Bottom

⊤ ℐ Δ Top



69

Interpretation Example

Δ = 𝑣,𝑤, 𝑥, 𝑦, 𝑧
𝐴ℐ = 𝑣,𝑤, 𝑥
𝐵ℐ = 𝑥, 𝑦
𝑅ℐ = { 𝑣,𝑤 , 𝑣, 𝑥 , 𝑦, 𝑥 , 𝑥, 𝑧 }

w

𝑩ℐ

v

x

y

z

𝑨ℐ

Δ

R



70

Interpretation Example

¬𝐵 ℐ =
𝐴 ⊔ 𝐵 ℐ =
¬𝐴 ⊓ 𝐵 ℐ =
∃𝑅. 𝐵 ℐ =
∀𝑅. 𝐵 ℐ =
∃𝑅. ∃𝑅. 𝐴 ℐ =
∃𝑅.¬ 𝐴 ⊓ 𝐵

ℐ

∃𝑅6. 𝐴 ℐ =
𝑅7 ℐ =

w

v

x

y

z

Δ

R

𝑩ℐ𝑨ℐ



71

Answers

¬𝐵 ℐ = {v,w, z}
𝐴 ⊔ 𝐵 ℐ = {v,w, x, y}
¬𝐴 ⊓ 𝐵 ℐ = {y}
∃𝑅. 𝐵 ℐ = {v, y}
∀𝑅. 𝐵 ℐ = {y,w, z}
∃𝑅. ∃𝑅. 𝐴 ℐ = {}
∃𝑅.¬ 𝐴 ⊓ 𝐵

ℐ
= v, x

∃𝑅6 . 𝐴 ℐ = 𝑤, 𝑥, 𝑧
𝑅7 ℐ = { 𝑣,𝑤 , 𝑣, 𝑥 , 𝑣, 𝑧 , 𝑦, 𝑥 , 𝑦, 𝑧 , 𝑥, 𝑧 }

w

v

x

y

z

Δ

𝑩ℐ𝑨ℐ

R



DL Reasoning Revisited



73

DL Reasoning Revisited

73

A description logic knowledge base comprises:
• A TBox defining concepts and roles

• An ABox containing assertations about instances

𝐾 = ⟨𝑇𝐵𝑜𝑥, 𝐴𝐵𝑜𝑥⟩

We can construct an interpretation ℐ = ⟨Δ,⋅ℐ⟩ which maps the instances, concepts and 
roles in 𝐾 onto a domain Δ via an interpretation function ⋅ℐ

We can redefine the reasoning tasks in terms of ℐ



74

Satisfaction

74

“Can this class have any instances?”

A class 𝐶 is satisfiable with respect to a KB 𝐾 iff
there exists an interpretation ℐ of 𝐾 with 𝐶ℐ ≠ ∅



75

Subsumption

75

“Is every instance of this class necessarily an instance of this other class?”

A class 𝐶 is subsumed by a class 𝐷 with respect to a KB 𝐾 iff
for every interpretation ℐ of 𝐾, 𝐶ℐ ⊆ 𝐷ℐ



76

Equivalence

76

“Is every instance of this class necessarily an instance of this other class, and vice 
versa?”

A class 𝐶 is equivalent to a class 𝐷 with respect to a KB 𝐾 iff
for every interpretation ℐ of 𝐾, 𝐶ℐ = 𝐷ℐ



77

Classification

77

“Is this individual necessarily an instance of this class?”

An individual 𝑥 is an instance of class C wrt a KB 𝐾 iff
for every interpretation ℐ of 𝐾, 𝑥ℐ ∈ 𝐶ℐ



78

Reduction to Satisfaction

78

Tableau-based reasoners for description logics (the predominant modern approach) 
reduce all reasoning tasks to satisfaction:

Subsumption
• 𝐶 is subsumed by 𝐷 ⟺ (𝐶 ⊓ ¬𝐷) is unsatisfiable

Equivalence
• 𝐶 is equivalent to 𝐷 ⟺ both (𝐶 ⊓ ¬𝐷) and(¬𝐶 ⊓ 𝐷) are unsatisfiable

Classification
• 𝑥 is an instance of 𝐶 ⟺ (¬𝐶 ⊓ 𝑥 ) is unsatisfiable



79

Further Reading
Daniele Nardi and Ronald J. Brachman (2003) An Introduction to Description Logics, in 
Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi and Peter F. 
Patel-Schneider (eds) The Description Logic Handbook: Theory, implementation and 
applications, Cambridge University Press, 2003, pp.1-40. 

F. Baader and W. Nutt (2003) Basic Description Logics, in Franz Baader, Diego 
Calvanese, Deborah L. McGuinness, Daniele Nardi and Peter F. Patel-Schneider (eds) 
The Description Logic Handbook: Theory, implementation and applications, Cambridge 
University Press, 2003, pp.47-100.



Next Lecture: OWL


