University of

Southampton

®d University of

Southampton

\&/

RDF Schema and Description
Logics
COMP6256 Knowledge Graphs for Al Systems

Dr Nicholas Gibbins - nmg@ecs.soton.ac.uk

8d University of

\&/Southampton

Using RDF to define RDFS

RDFS is a simple ontology language for use with RDF

RDFS is an RDF vocabulary which contains:
« Classes for defining classes and properties

* Properties for defining basic characteristics of classes and properties
« Global property domains and ranges

« Some ancillary properties
« Defined by, see also

Dj‘) . .
o _ University of

\&/Southampton

Notes on RDF and RDFS namespaces

Most terms in RDF Schema are defined as part of the RDFS namespace
 http://www.w3.0rg/2000/01/rdf-schema# , abbreviated here as rdfs:

Two terms are defined as part of the RDF namespace: rdf:type and rdf:Property
 http://www.w3.0rg/1999/02/22-rdf-syntax-ns#, abbreviated as rdf:

This is a historical accident, but can trip up the unwary

Be careful when using these terms in SPARQL queries!

i University of

Southampton

RDF Schema class definitions

We wish to define the class Person:

rdf:type
YP 4 rdfs:Class

ex:Person rdf:type rdfs:Class .

University of

Southampton

RDF Schema class definitions

Employee is a subclass of Person

ex:Person

rdfs:subClassOf

rdf:type
ex:Employee UL rdfs:Class

ex:Employee rdf:type rdfs:Class ;
rdfs:subClassOf ex:Person .

University of

Southampton

RDF Schema class semantics

rdfs:subClassOf is transitive:
(A rdfs:subClassOf B) and (B rdfs:subClassOf C) implies (A rdfs:subClassOf C)

ex:Person AN
\

rdfs:subClassOf \

ex:Employee ‘. rdfs:subClassOf

rdfs:subClassOf

Ex:PartTime YW

Employee

University of

Southampton

RDF Schema class semantics

rdfs:subClassOf is reflexive
« All classes are subclasses of themselves

- N

\
\
" rdfs:subClassOf
/

\\ ’/

University of

Southampton

RDF Schema class semantics

rdf:type distributes over rdf:subClassOf:
(A rdfs:subClassOf B) and (C rdf:type A) implies (C rdf:type B)

ex:Person kg rdf:type

rdfs:subClassOf AN

rdf:type
ex:Employee

RDF Schema property definitions

We wish to define the property worksFor:

rdf:type
P g4 rdf:Property

ex:WorksFor rdf:type rdf:Property .

a4 University of

Southampton

10

8d University of

\&/Southampton

RDF Schema property definitions

Important difference between RDF and object-oriented programming languages
« OO languages define classes in terms of the properties they have

« RDF defines properties in terms of the classes whose instances they relate to
each other

The domain of a property is the class that the property runs from
The range of a property is the class that a property runs to

11

University of

Southampton

RDF Schema property definitions

The property worksFor relates objects of class Employee to objects of class Company

rdfs:range

rdf:type
ex:worksFor L rdf:Property

rdfs:domain

ex:Company

ex:Employee

ex:worksFor rdf:type rdf:Property ;
rdfs:domain ex:Employee ;
rdfs:range ex:Company .

12

RDF Schema property definitions

Specialisation exists in properties as well as classes
« worksFor is a subproperty of affiliatedTo

ex:affiliatedTo

rdfs:subPropertyOf

df:t
ALELY/SLER rdf:Property

ex:worksFor rdf:type rdf:Property ;
rdfs:subPropertyof ex:affiliatedTo

University of

Southampton

13

University of

Southampton

RDF Schema property semantics

rdfs:subPropertyOf is transitive and reflexive
« Entailment of superproperties

ex:affiliatedTo
- b Sl
- ~
P d ~
P ~
P N\
Ve \

/7
I/ rdfs:subPropdrtyOf \
/ \

ex:worksFor

14

RDF Schema property semantics

Type entailments from range and domain constraints

ex:Employee

|

rdf:type : rdfs:d rdf:type
|
|

m ex:worksFor w

University of

Southampton

15

University of

Southampton

RDF Schema predefined classes

» rdfs:Class rdfs:Resource

rdf:Property rdfs:subClassQ
rdfs:Resource

rdfs:Literal
rdfs:Datatype

rdfs:subClassOf

rdfs:subClassOf

rdfs:Literal

rdfs:Class rdf:Property

rdf:XMLLiteral rdfs:subClassO rdfs:subClassOf

rdfs:subClassOf

rdfs:Datatype rdf:XMLLiteral

xsd:integer

16

6?535@ University of
\&/Southampton

RDF Schema ancillary features

rdfs:Tabel is used to give a human-readable name for a resource
<#person-01269> rdfs:label “John Smith”

rdfs:comment is used to give a human-readable description for a resource

<#Employee> rdfs:comment “A person who works.” .

rdfs:seeAlso is used to indicate a resource which can be retrieved to give more
information about something

rdfs:isDefinedBy indicates a resource which is responsible for the definition of
something (a subproperty of rdfs:seeAlso)

17

®d University of

Southampton

N,

Description Logics

Why do we need Description Logics?

RDF Schema isn’t sufficient for all tasks
« There are things you can’t express
* There are things you can’t infer

s(e
D

University of

\&/Southampton

19

6?535@ University of
\&/Southampton

Description Logics

A family of knowledge representation formalisms
« A subset of first order predicate logic (FOPL)
« Decidable - trade-off of expressivity against algorithmic complexity
« Well understood - derived from work in the mid-80s to early 90s
« Model-theoretic formal semantics

« Simpler syntax than FOPL

Used as the foundation for the web ontology language OWL

This module assumes that you're familiar with FOPL.

If you need a refresher, the following resource is available:
« Johnsonbaugh, R. (2014) Discrete Mathematics, 7th ed. Chapter 1. (ebook via library)

20

?535‘% University of
\&/Southampton

Description Logics

Description logics restrict the predicate types that can be used
« Unary predicates denote concept membership

Person(x)

» Binary predicates denote roles between instances

hasChild(x,y)

Note on terminology: the DL literature uses slightly different terms to those in RDFS
« Class and concept are interchangeable terms
« Role, relation and property are interchangeable terms

21

8d University of

\&/Southampton

Defining ontologies with Description Logics

Describe classes (concepts) in terms of their necessary and sufficient conditions

Consider an attribute A of a class C:

 Attribute A is a necessary condition for membership of C
« If an object is an instance of C, then it has A

 Attribute A is a sufficient condition for membership of C
* If an object has A, then it is an instance of C

22

Description Logic Reasoning Tasks

Satisfaction
« “Can this class have any instances?"

Subsumption
 "Is every instance of class C necessarily an instance of class D?"

Classification
« "What classes is this object an instance of?"

S

University of

outhampton

23

Concepts as sets

——————
g S
L4

-
‘—‘ -~

i<

University of

X7 Southampton

24

e University of

¥ Southampton

Syntax

?535‘% University of
\&/Southampton

Expressions

Description logic expressions consist of:

« Concept and role descriptions:
« Atomic concepts: Person
« Atomic roles: hasChild
« Complex concepts: “person with two living parents”
« Complex roles: “has parent’s brother” (i.e. "has uncle")

« AXioms that make statements about how concepts or roles are related to each other:

« “Every person with two living parents is thankful”
« “hasUncle is equivalent to has parent’s brother”

26

22 _ University of
\&/Southampton

Concept Constructors

Used to construct complex concepts:

* Boolean concept constructors -C cubD CnbD
« Restrictions on role successors VR.C 3R.C

« Number/cardinality restrictions <nR >=nR =nR
 Nominals (singleton concepts) {x}

« Universal concept, top T

Contradiction, bottom 1

27

Role Constructors

Used to construct complex roles:
« Concrete domains (datatypes)
* Inverse roles R~
« Role composition RoS
« Transitive roles R*

University of

Southampton

28

OWL and Description Logics

* Not every description logic supports all constructors
 More constructors = more expressive = higher complexity

* For example, OWL DL is equivalent to the logic SHOIN (D)
« Atomic concepts and roles
« Boolean operators

Universal, existential restrictions, number restrictions

Role hierarchies

Nominals

Inverse and transitive roles (but not role composition)

S

University of

outhampton

29

Boolean Concept Constructors: Intersection

Child N Happy

The class of things which are both
children and happy

Read as “Child AND Happy”

d University of

Southampton

;Sjg

Child

Happy

30

d University of

Southampton

%

Boolean Concept Constructors: Union

Rich U Famous

The class of things which are rich or famous Rich Famous
(or both)

Read as “Rich OR Famous”

fomq _ University of
\&/Southampton

Boolean Concept Constructors: Complement

—Happy
The class of things which are not happy Happy

Read as “NOT Happy”

d University of

CIREE:
\&/Southampton

Restrictions: Existential

JhasPet. Cat

The class of things which have some pet that is a @
« must have at least one pet

Read as “hasPet SOME Cat”

33

d University of

CIREE:
\&/Southampton

Restrictions: Existential

JhasPet. Cat

The class of things which have some pet that is a @
« must have at least one pet

Read as “hasPet SOME Cat”

34

University of

Restrictions: Universal

VYhasPet. Cat

The class of things all of whose pets are cats
« Or, which only have pets that are cats
* includes those things which have no pets

Read as “hasPet ONLY Cat”

X7 Southampton

35

University of

Restrictions: Universal

VYhasPet. Cat

The class of things all of whose pets are cats
« Or, which only have pets that are cats
* includes those things which have no pets

Read as “hasPet ONLY Cat”

X7 Southampton

36

University of

Restrictions: Universal

VYhasPet. Cat

The class of things all of whose pets are cats
« Or, which only have pets that are cats
* includes those things which have no pets

Read as “hasPet ONLY Cat”

X7 Southampton

37

Restrictions: Number
= 1 hasPet

The class of things which have exactly one pet

\&/

d University of

Southampton

38

Restrictions: Number
= 1 hasPet

The class of things which have exactly one pet

\&/

d University of

Southampton

39

Restrictions: Number

> 2 hasPet

The class of things which have at least two pets

\&/

d University of

Southampton

40

Restrictions: Number

> 2 hasPet

The class of things which have at least two pets

\&/

d University of

Southampton

41

Knowledge Bases

A description logic knowledge base (KB) has two parts:

« TBox: terminology

« A set of axioms describing the structure of the domain
(i.e., a conceptual schema)

« Concepts, roles

 ABox: assertions
« A set of axioms describing a concrete situation (data)
* Instances

S

University of

outhampton

42

TBox Axioms

Concept inclusion
(C is a subclass of D)

Concept equivalence
(C is equivalent to D)

Role inclusion
(R is a subproperty of S)

Role equivalence
(R is equivalent to S)

Role transitivity
(R composed with itself is a
subproperty of R)

~
I
S

~
Il
S

=
I
A

8d University of

\&/Southampton

43

8d University of

\&/Southampton

Revisiting Necessary and Sufficient Conditions

“Attribute A is a necessary/sufficient condition for membership of C”

Instead of talking directly about A, we can make a class expression (using the concept
constructors) that represents the class of things with attribute A - call it D

« Membership of D is necessary/sufficient for membership of C

44

8d University of

\&/Southampton

Revisiting Necessary and Sufficient Conditions

Membership of D is a necessary condition for membership of C

CED

Membership of D is a sufficient condition for membership of C

C 32D

Membership of D is both a necessary and a sufficient condition for membership of C

C =D

45

8d University of

\&/Southampton

Revisiting Necessary and Sufficient Conditions

Some common terminology:
CCED

« Cis a primitive or partial class
C=D

« Cis a defined class

(you’ll see these terms used in the Protégé OWL Tutorial)

46

ABox AxXioms

Concept instantiation
C(x)
« X is of type C

Role instantiation

R(x,y)
« X has R of y

BEQ University of

Southampton

47

Axiom Examples

Every person is either living or dead
Every happy child has a loving parent

Every child who eats only cake is
unhealthy

No elephants can fly

A mole is a sauce from Mexico that
contains chili

All Englishmen are mad

8d University of

\&/Southampton

48

Axiom Examples

Every person is either living or dead
Every happy child has a loving parent

Every child who eats only cake is
unhealthy

No elephants can fly

A mole is a sauce from Mexico that
contains chili

All Englishmen are mad

?535‘% University of
\&/Southampton

Person E Living U Dead
Child N Happy E JhasParent. Loving
Child 1M Veats. Cake M Jeats. Cake = —Healthy

Elephant N FlyingThing = 1

Mole =
Sauce M JhasOrigin. {Mexico} I
JhasIngredient. Chili

dbornln. {England} N Male E Mad

49

Tips for Description Logic Axioms

* No single ‘correct’ answer - different modelling choices

* Break sentence down into pieces
« e.g. “successful man”, “spicy ingredient” etc
« Look for nouns and adjectives (concepts)

* Look for verb phrases (roles)

« Look for indicators of axiom type:
« “Every X is Y’ - inclusion axiom
« “X'is Y" - equivalence axiom

« Remember that VR.C is satisfied by instances which have no value for R

S

University of

outhampton

50

4 University of

\&/Southampton

Semantics

8d University of

\&/Southampton

Description Logics and Predicate Logic

Description Logics are a subset of first order Predicate Logic with a simplified syntax

Every DL expression can be converted into an equivalent FOPL expression

53

Description Logics and Predicate logic

Every concept C is translated to a formula ¢, (x)

Every role R is translated to a formula ¢» (X, y)

Boolean concept constructors:

$_c(x) = ¢ (x)
bcup(x) = Pc(x) V pp(x)
Gcnp(x) = ¢Pc(x) A dpp(x)

Restrictions:

$Parc(x) = y. pr(x,y) A pc(y)
Gvrc(x) =Vy.or(x,y) = ¢pc(¥)

S

University of

outhampton

54

Description Logics and Predicate logic

Axioms are translated as follows:

Concept inclusion CED

Vx.pc(x) = ¢p(x)

Concept equivalence C = D

Vx.¢pc(x) © ¢p(x)

S

University of

outhampton

55

Example

“Every child who eats cake is happy”

dq University of

Southampton

56

Example

“Every child who eats cake is happy”

Child r Jeats. Cake E Happy

%

dq University of

Southampton

57

Example

“Every child who eats cake is happy”

Child r Jeats. Cake E Happy

VX Pchitanaeats.cake (X) = ¢Happy (x)

%

dq University of

Southampton

58

Example

“Every child who eats cake is happy”

Child r Jeats. Cake = Happy

VX Pchitanaeats.cake (X) = ¢Happy (x)

%

dq University of

Southampton

59

Example

“Every child who eats cake is happy”

Child r Jeats. Cake E Happy

VX Pchitanaeats.cake (X) = ¢Happy (x)

B4 University of

Southampton

60

Example

“Every child who eats cake is happy”

Child r Jeats. Cake E Happy

VX Pchitanaeats.cake (X) = ¢Happy (x)

q University of

Southampton

61

Example

“Every child who eats cake is happy”

Child r Jeats. Cake E Happy

VX Pchitanaeats.cake (X) = ¢Happy (x)

VX Pcnita(X) A Pacats.care(X) = ¢Happy (x)

%

d University of

Southampton

62

Example

“Every child who eats cake is happy”

Child r Jeats. Cake E Happy

VX Pchitanaeats.cake (X) = ¢Happy (x)

VX Pcnita(X) A Pacats.care(X) = ¢Happy (x)

%

d University of

Southampton

63

Example

“Every child who eats cake is happy”

Child r Jeats. Cake E Happy

VX Pchitanaeats.cake (X) = ¢Happy (x)

VX Pcnita(X) A Pacats.care(X) = ¢Happy (x)

\&/

B4 University of

Southampton

64

S

Example

“Every child who eats cake is happy”

Child r Jeats. Cake E Happy

VX Pchitanaeats.cake (X) = ¢Happy (x)
VX Pcnita(X) N Paeats.care(X) = PHappy (x)

VX Gcnita(X) AY Pears (X, ¥) A Peare(y) = ¢Happy (x)

University of

outhampton

65

\&/

Example

“Every child who eats cake is happy”

Child r Jeats. Cake E Happy

VX Pchitanaeats.cake (X) = ¢Happy (x)
VX Pcnita(X) AN Paeats.care(X) = ¢Happy (x)

VX Pcnia(X) AY Gears (X, ¥) A Peare () = ¢Happy (x)

d University of

Southampton

66

Description Logic Semantics

A is the domain (non-empty set of individuals)

Interpretation function J (or ext()) maps:
« Concept expressions to their extensions
(set of instances of that concept, subsets of A)

. Roles to subsets of AXA

. Individuals to elements of A
Examples:

° Cg is the set of members of C

° (C L D)j is the set of members of either C or D

8d University of

\&/Southampton

67

8d University of

\&/Southampton
Description Logic Semantics
Syntax Semantics Notes
(C n D)? c’ n D’ Conjunction
(C u D)’ ¢’ u D’ Disjunction
(=C)’ A\C’ Complement
(3R.C)’ {x]3y .(x,y) ER? Ay € C7} Existential
(VR.C)’ {x|Vy (x,y) € R = y € C7} Universal
(=nR)’ (x|#{y|(x,y) € R} = n} Min cardinality
(€ nR)’ {x|#{y|(x,y) € R} < n} Max cardinality
(=nR)’ {x|#{y|[(x,y) € R7} = n} Exact cardinality
(L)’ 1) Bottom
(1)’ A Top

68

d University of

L
\&/Southampton

Interpretation Example

A={v,wx,vy,z}
Al = {v,w,x}
B’ = {x,y}
R’ = {(v,w), (v, x),(y, x), (x, z)}

69

d University of

L
\&/Southampton

Interpretation Example

(=B) =
(AuB)! =
(=4 N B) =
(3R.B)’ =
(VR.B)’ =

(3R.(3R.A)) =

(3R.~(AN B))’
(3R™.A) =
(R*)? = Iaad

70

d University of

L
\&/Southampton

Answers

(=B) = {v,w, z}
(AuB)! = {v,w,x,y}
(=A N B) = {y}
(3R.B)? = {v,y}
(VR.B)? = {y,w,z}

(3R.3R.4A)) ={

(3R.~(AN B)) = {v,x}
(3R .A) = {w,x, z}
(R*) = {(v,w), (v, x), (v, 2),{y, x), (¥, 2), {x, 2)} T,

71

®d University of

Southampton

\&/

DL Reasoning Revisited

?535‘% University of
\&/Southampton

DL Reasoning Revisited

A description logic knowledge base comprises:
« A TBox defining concepts and roles
« An ABox containing assertations about instances

K = (TBox, ABox)

We can construct an interpretation 7 = (A,-7) which maps the instances, concepts and
roles in K onto a domain A via an interpretation function -’

We can redefine the reasoning tasks in terms of 7

73

Satisfaction

“Can this class have any instances?”

A class C is satisfiable with respect to a KB K iff
there exists an interpretation 7 of K with ¢7 = ¢

University of

¥/Southampton

74

S

Subsumption

“Is every instance of this class necessarily an instance of this other class?”

A class C is subsumed by a class D with respect to a KB K iff
for every interpretation 7 of K, ¢’ < D’

University of

outhampton

75

22 _ University of
\&/Southampton

Equivalence

“Is every instance of this class necessarily an instance of this other class, and vice
versa?”

A class C is equivalent to a class D with respect to a KB K iff
for every interpretation 7 of K, ¢ = D’

76

Classification

“Is this individual necessarily an instance of this class?”

An individual x is an instance of class C wrt a KB K iff
for every interpretation 7 of K, x” € ¢’

S

University of

outhampton

77

Sgﬂ\fﬁgﬁfpton
Reduction to Satisfaction

Tableau-based reasoners for description logics (the predominant modern approach)
reduce all reasoning tasks to satisfaction:

Subsumption

« C is subsumed by D & (C n—D) is unsatisfiable
Equivalence

« C is equivalent to D & both (€ N —=D) and(—C n D) are unsatisfiable
Classification

« x is an instance of € & (=C 1 {x}) is unsatisfiable

78

8d University of

\&/Southampton

Further Reading

Daniele Nardi and Ronald J. Brachman (2003) An Introduction to Description Logics, in
Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi and Peter F.
Patel-Schneider (eds) The Description Logic Handbook: Theory, implementation and

applications, Cambridge University Press, 2003, pp.1-40.

F. Baader and W. Nutt (2003) Basic Description Logics, in Franz Baader, Diego
Calvanese, Deborah L. McGuinness, Daniele Nardi and Peter F. Patel-Schneider (eds)
The Description Logic Handbook: Theory, implementation and applications, Cambridge

University Press, 2003, pp.47-100.

79

®d University of

Southampton

N,

Next Lecture: OWL

