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Web Services as state machines 

Consider a hypothetical online bookseller: Orinoco Books 

 

When we create an order, the order may be in one of a number of discrete states: 

–  Open: we can add or remove items to our order 

–  Paid: we have successfully sent payment to Orinoco, and can no longer change our order 

–  Shipping: Orinoco is preparing and dispatching our order 

–  Delivered: we have received our order 

The order moves between states in response to our interactions with Orinoco 
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UML Statecharts: states and transitions 
Common graphical notation for describing state machines 

–  Object-oriented extension to Harel’s statechart 

–  (you’ll need this for your coursework!) 

Tip: label states with nouns or adjectives and transitions with verbs or verb phrases 

door  
open 

door 
closed 

close door 

states 

transitions between states 

open door 
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UML Statecharts: pseudostates 
Two distinguished pseudostates: 

•  Initial state 

•  Final state 

Choice pseudostate: 

[value <= balance] 

[value > balance] 

guards 
(used to choose which path to take) 
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Orinoco Workflow 
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Revisiting the  
Richardson Maturity Model 
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Richardson Maturity Model 

Hypermedia 

HTTP 

URI 



9 

Richardson Level 1 

Multiple URIs used for resources 

Key resource type from the workflow is an order 

–  http://orinoco.com/order/{order_id} 
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Richardson Level 2 

We have different URIs for each order (resource) 

How do we interact with the orders? 

–  create a new order 

–  change order (add/remove items) 

–  cancel an order 

–  checkout and payment (submit order) 

–  check order status 

Use appropriate HTTP methods! 
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Create an order 
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Create an order 

Can use either PUT or POST: 

PUT to a new URI  

–  new URI: http://orinoco.com/order/{order_id} 

–  client chooses order id 

POST to an existing URI  

–  existing URI: http://orinoco.com/order/ 

–  server chooses order id 
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PUT to a new URI 

PUT /order/1234 HTTP/1.1 
Host: orinoco.com 
Content-Type: application/xml 
Content-Length: 107 
 
<order xmlns=“http://schema.orinoco.com/order”> 
  <items> 
  </items> 
</order> 

HTTP/1.1 201 Created 
Date: Tue, 29 Oct 2019 17:10:00 GMT 
Content-Length: 0 
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POST to an existing URI 

POST /order/ HTTP/1.1 
Host: orinoco.com 
Content-Type: application/xml 
Content-Length: 107 
 
<order xmlns=“http://schema.orinoco.com/order”> 
  <items> 
  </items> 
</order> 

HTTP/1.1 201 Created 
Location: /order/1234 
Date: Tue, 29 Oct 2019 17:10:00 GMT 
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POST to an existing URI 
POST /order/ HTTP/1.1 
Host: orinoco.com 
Content-Type: application/xml 
Content-Length: 107 
 

<order xmlns=“http://schema.orinoco.com/order”> 
  <items> 
  </items> 
</order> 

HTTP/1.1 201 Created 
Content-Location: /order/1234 
Date: Tue, 29 Oct 2019 17:10:00 GMT 
 
<order xmlns=“http://schema.orinoco.com/order”> 
  <items> 
  </items> 
</order> 
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Change order 
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PUT to an existing URI 

PUT /order/1234 HTTP/1.1 
Host: orinoco.com 
Content-Type: application/xml 
Content-Length: 134 
 
<order xmlns=“http://schema.orinoco.com/order”> 
  <items> 
    <item quantity=“1” isbn=“1234567890”/> 
  </items> 
</order> 

HTTP/1.1 200 OK 
Date: Tue, 29 Oct 2019 17:15:00 GMT 
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Conditional PUT 

PUT /order/1234 HTTP/1.1 
Host: orinoco.com 
Content-Type: application/xml 
Content-Length: 134 
If-Unmodified-Since: Tue, 29 Oct 2019 17:15:00 GMT 
 
<order xmlns=“http://schema.orinoco.com/order”> 
  <items> 
    <item quantity=“1” isbn=“1234567890”/> 
  </items> 
</order> 

HTTP/1.1 412 Precondition Failed 
Date: Tue, 29 Oct 2019 17:20:00 GMT 
Content-Length: 0 
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Cancel an order 
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Cancel an order 

Use DELETE 

 

DELETE is idempotent 

–  Repeated DELETEs have the same effect as a single DELETE 

–  Status codes may change (e.g. 404 for subsequent DELETEs) 
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DELETE 

DELETE /order/1234 HTTP/1.1 
Host: orinoco.com 

HTTP/1.1 204 No Content 
Content-Length: 0 
Date: Tue, 29 Oct 2019 17:25:00 GMT 
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DELETE 

DELETE /order/1234 HTTP/1.1 
Host: orinoco.com 

HTTP/1.1 404 Not Found 
Content-Length: 0 
Date: Tue, 29 Oct 2019 17:25:00 GMT 
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DELETE 

DELETE /order/1234 HTTP/1.1 
Host: orinoco.com 

HTTP/1.1 410 Gone 
Content-Length: 0 
Date: Tue, 29 Oct 2019 17:25:00 GMT 
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Payment 
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Richardson Level Three 

CRUD isn’t everything! 

–  Limited application model 

–  In our scenario, payment doesn’t fit cleanly into the CRUD model 

–  Encourages tight coupling through URI templates 

–  Simple pattern 

 

Use hypertext links to indicate protocols 

–  What are the next steps that you can take? 

–  What are the next resources? 
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Where are the links? 

<order xmlns=“http://schema.orinoco.com/order”> 
  <items> 
    <item quantity=“1” isbn=“1234567890”/> 
  </items> 
  <status>open</status> 
</order> 

 
 

What can you do next? 
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Media Types 

application/xml doesn’t have specific link semantics 

Can adopt standard hypermedia format (HTML, Atom, etc) 

–  Widely understood by software agents 

–  Needs to be adapted to domain 

Can create domain-specific format that supports application 

–  Direct supports domain 

–  Maintains visibility of messages at the protocol level 

–  Not widely understood 

Use link types to define protocols 
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text/html 

Use OPTIONS to determine the right HTTP method to use with links 

–  Allow: header in response lists allowed methods (for payment, PUT?) 

Need to define link types for use with rel: microformats, RDF, etc 

<html xmlns="http://www.w3.org/1999/xhtml”> 
  <body> 
    <div class="order”> 
      <ul class="items”> 
        <li class="item”> 
          <p class=”isbn">1234567890</p> 
          <p class="quantity">1</p> 
        </li> 
      </ul> 
      <a href="https://orinoco.com/payment/1234” rel="payment">payment</a>  
    </div> 

  </body> 
</html> 
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application/vnd.orinoco+xml 

Proprietary (vendor-specific) media type 

–  Uses POX for business data 

–  Uses (e.g.) Atom link elements for hypermedia control 

<order xmlns=“http://schema.orinoco.com/order”> 
  <items> 
    <item quantity=“1” isbn=“1234567890”/> 
  </items> 
  <link href=“https://orinoco.com/payment/1234” rel=“payment”/> 
  <status>open</status> 
</order> 
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Link: header 

GET /order/1234 HTTP/1.1 
Host: orinoco.com 

HTTP/1.1 200 OK 
Content-Type: application/vnd.orinoco+xml 
Link: <https://orinoco.com/payment/1234>; rel="payment”> 
 
<order xmlns=“http://schema.orinoco.com/order”> 
  <items> 
    <item quantity=“1” isbn=“1234567890”/> 
  </items> 
</order> 
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Check order status 
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Check order status 

Use GET 

–  GET is idempotent 

–  GET has no side-effects! 
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GET 

GET /order/1234 HTTP/1.1 
Host: orinoco.com 

HTTP/1.1 200 OK 
Content-Type: application/xml 
Content-Length: 107 
Date: Tue, 30 Oct 2018 16:30:00 GMT 
 
<order xmlns=“http://schema.orinoco.com/order”> 
  <items> 
  </items> 
  <status>open</status> 
</order> 
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GET 

GET /order/9999 HTTP/1.1 
Host: orinoco.com 

HTTP/1.1 404 Not Found 
Content-Length: 0 
Date: Tue, 30 Oct 2018 16:30:00 GMT 
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Collections and Elements 

Extra conventions for talking about collections of elements 

–  An order can be considered to be a collection 

–  An item in the order is an element of that collection 

Some consensus of semantics of HTTP methods for these 

In our case:  

–  http://orinoco.com/order/ is a collection 

–  http://orinoco.com/order/{order_id} is an element 
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RESTful Methods for Collections 
Method Behaviour 

GET List the members of the collection (list of URIs) 

PUT Replace the entire collection with another collection 

POST Create a new member in the collection and automatically assign 
it a URI 

DELETE Delete the entire collection 
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RESTful Methods for Collection Elements 
Method Behaviour 

GET Retrieve a representation of the specified element 

PUT Replace the specified element of the collection, or if it doesn’t 
exist create it 

POST Treat the specified member as a collection and create a new 
element in it 

DELETE Delete the specified member of the collection 
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Orinoco Workflow 

open 
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paid 

delivered 

GET /order/{order_id} 
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PUT /order/{order_id} 
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400 Bad Request DELETE /order/{order_id} 
204 No Content 
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Further Reading 

REST in Practice tutorial slides 

–  http://www.slideshare.net/guilhermecaelum/rest-in-practice 

 

Webber et al (2010) REST in Practice. Sebastopol, CA: O’Reilly Media 



Documenting REST 
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Documentation 

What are the key aspects of a RESTful interface? 

 

How should we document each of these? 

What does a developer need to know to use our service? 



Identification 
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URIs 
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URI Parameters 



Interaction 
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Methods 
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Status Codes 
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Headers 
Mostly for Authorisation 

•  OAuth 2.0, etc 

Consider how the various Accept-*: 
headers might be used. 



Representation 
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Representation 
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Examples 
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HATEOAS 
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Listings 



OpenAPI 
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OpenAPI 

Originated with Swagger tool for designing RESTful APIs 

 

Represents API descriptions in JSON or YAML (Yet Another Markup Language) 

–  We’ll concentrate on the YAML serialization 
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OpenAPI metadata 
OpenAPI description starts with: 

–  Version number of OpenAPI in use 

–  Simple metadata about the service in the info: block 

openapi: 3.0.0 
info: 
  version: 1.0.0 
  title: Orinoco API 
  description: The API for the Orinoco online bookseller 
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Servers 
API endpoints are defined relative to a base URI 

–  Defined in OpenAPI using the servers: block 

servers: 
  - url: https://orinoco.com 
    description: Live server 
  _ url: https://test.orinoco.com 
    description: Test server (uses dummy data) 
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Components 
components: block used to define repeatedly-used information 

–  Most often used to define format of message bodies 

components: 
  schemas: 
    order: 
      type: object 
      properties: 
        items: 
          type: array 
          item: 
            type: string 
        status: 
          type: string 
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Paths 

Lists available paths on the server 

–  e.g. https://orinoco.com/order/1234 

 

For each path, lists: 

–  The methods which can be used on that path 

–  The content of any request body which should accompany the method (for PUT, POST) 

–  The responses which may be received from the method (including response bodies) 
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Path Example 

paths: 
  /order/{order_id}: 
    get: 
      description: Obtain information about an order 
      parameters: 
        - name: order_id 
          in: path 
          required: true 
          schema: 
            type: string 
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Path Example 

paths: 
  /order/{order_id}: 
    get: 
      ... 
      responses: 
        ‘200’: 
          description: Successfully returned an order 
          content: 
            application/xml: 
              schema:  
                $ref: ‘#/components/schemas/order’ 
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Summary 

Documentation should cover all the bases of the web architecture 

–  Identification – parameterised URIs 

–  Interaction – HTTP methods, status codes and headers 

–  Representation – formats for request and response, with examples 

Listings of all of the above 
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RESTful API Examples 

Twitter 

https://developer.twitter.com/en/docs/api-reference-index 

Paypal 

https://developer.paypal.com/docs/api/payments/ 

Imgur 

https://apidocs.imgur.com 

Wordpress 

https://developer.wordpress.org/rest-api/ 
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Tools and Further Reading 

Swagger API development tool 

https://swagger.io/ 

Overview of OpenAPI 

https://swagger.io/docs/specification/about/ 

OpenAPI Specification 

https://github.com/OAI/OpenAPI-Specification 



Next: CORS and Memento 


