

REST in Practice

COMP3227 Web Architecture & Hypertext Technologies

Dr Heather Packer – hp3@ecs.soton.ac.uk

3

Web Services as state machines

Consider a hypothetical online bookseller: Orinoco Books

When we create an order, the order may be in one of a number of discrete states:

–  Open: we can add or remove items to our order

–  Paid: we have successfully sent payment to Orinoco, and can no longer change our order

–  Shipping: Orinoco is preparing and dispatching our order

–  Delivered: we have received our order

The order moves between states in response to our interactions with Orinoco

4

UML Statecharts: states and transitions
Common graphical notation for describing state machines

–  Object-oriented extension to Harel’s statechart

–  (you’ll need this for your coursework!)

Tip: label states with nouns or adjectives and transitions with verbs or verb phrases

door
open

door
closed

close door

states

transitions between states

open door

5

UML Statecharts: pseudostates
Two distinguished pseudostates:

•  Initial state

•  Final state

Choice pseudostate:

[value <= balance]

[value > balance]

guards
(used to choose which path to take)

6

Orinoco Workflow

open

shipping

paid

delivered

check
status

change
order

pay

deliver

prepare

create
order

[success]

[failure]

cancel

7

Revisiting the
Richardson Maturity Model

8

Richardson Maturity Model

Hypermedia

HTTP

URI

9

Richardson Level 1

Multiple URIs used for resources

Key resource type from the workflow is an order

–  http://orinoco.com/order/{order_id}

10

Richardson Level 2

We have different URIs for each order (resource)

How do we interact with the orders?

–  create a new order

–  change order (add/remove items)

–  cancel an order

–  checkout and payment (submit order)

–  check order status

Use appropriate HTTP methods!

11

Create an order

open

shipping

paid

delivered

check
status

change
order

pay

deliver

prepare

create
order

[success]

[failure] cancel

12

Create an order

Can use either PUT or POST:

PUT to a new URI

–  new URI: http://orinoco.com/order/{order_id}

–  client chooses order id

POST to an existing URI

–  existing URI: http://orinoco.com/order/

–  server chooses order id

13

PUT to a new URI

PUT /order/1234 HTTP/1.1
Host: orinoco.com
Content-Type: application/xml
Content-Length: 107

<order xmlns=“http://schema.orinoco.com/order”>
 <items>
 </items>
</order>

HTTP/1.1 201 Created
Date: Tue, 29 Oct 2019 17:10:00 GMT
Content-Length: 0

14

POST to an existing URI

POST /order/ HTTP/1.1
Host: orinoco.com
Content-Type: application/xml
Content-Length: 107

<order xmlns=“http://schema.orinoco.com/order”>
 <items>
 </items>
</order>

HTTP/1.1 201 Created
Location: /order/1234
Date: Tue, 29 Oct 2019 17:10:00 GMT

15

POST to an existing URI
POST /order/ HTTP/1.1
Host: orinoco.com
Content-Type: application/xml
Content-Length: 107

<order xmlns=“http://schema.orinoco.com/order”>
 <items>
 </items>
</order>

HTTP/1.1 201 Created
Content-Location: /order/1234
Date: Tue, 29 Oct 2019 17:10:00 GMT

<order xmlns=“http://schema.orinoco.com/order”>
 <items>
 </items>
</order>

16

Change order

open

shipping

paid

delivered

check
status

change
order

pay

deliver

prepare

create
order

[success]

[failure] cancel

17

PUT to an existing URI

PUT /order/1234 HTTP/1.1
Host: orinoco.com
Content-Type: application/xml
Content-Length: 134

<order xmlns=“http://schema.orinoco.com/order”>
 <items>
 <item quantity=“1” isbn=“1234567890”/>
 </items>
</order>

HTTP/1.1 200 OK
Date: Tue, 29 Oct 2019 17:15:00 GMT

18

Conditional PUT

PUT /order/1234 HTTP/1.1
Host: orinoco.com
Content-Type: application/xml
Content-Length: 134
If-Unmodified-Since: Tue, 29 Oct 2019 17:15:00 GMT

<order xmlns=“http://schema.orinoco.com/order”>
 <items>
 <item quantity=“1” isbn=“1234567890”/>
 </items>
</order>

HTTP/1.1 412 Precondition Failed
Date: Tue, 29 Oct 2019 17:20:00 GMT
Content-Length: 0

19

Cancel an order

open

shipping

paid

delivered

check
status

change
order

pay

deliver

prepare

create
order

[success]

[failure] cancel

20

Cancel an order

Use DELETE

DELETE is idempotent

–  Repeated DELETEs have the same effect as a single DELETE

–  Status codes may change (e.g. 404 for subsequent DELETEs)

21

DELETE

DELETE /order/1234 HTTP/1.1
Host: orinoco.com

HTTP/1.1 204 No Content
Content-Length: 0
Date: Tue, 29 Oct 2019 17:25:00 GMT

22

DELETE

DELETE /order/1234 HTTP/1.1
Host: orinoco.com

HTTP/1.1 404 Not Found
Content-Length: 0
Date: Tue, 29 Oct 2019 17:25:00 GMT

23

DELETE

DELETE /order/1234 HTTP/1.1
Host: orinoco.com

HTTP/1.1 410 Gone
Content-Length: 0
Date: Tue, 29 Oct 2019 17:25:00 GMT

24

Payment

open

shipping

paid

delivered

check
status

change
order

pay

deliver

prepare

create
order

[success]

[failure] cancel

25

Richardson Level Three

CRUD isn’t everything!

–  Limited application model

–  In our scenario, payment doesn’t fit cleanly into the CRUD model

–  Encourages tight coupling through URI templates

–  Simple pattern

Use hypertext links to indicate protocols

–  What are the next steps that you can take?

–  What are the next resources?

26

Where are the links?

<order xmlns=“http://schema.orinoco.com/order”>
 <items>
 <item quantity=“1” isbn=“1234567890”/>
 </items>
 <status>open</status>
</order>

What can you do next?

27

Media Types

application/xml doesn’t have specific link semantics

Can adopt standard hypermedia format (HTML, Atom, etc)

–  Widely understood by software agents

–  Needs to be adapted to domain

Can create domain-specific format that supports application

–  Direct supports domain

–  Maintains visibility of messages at the protocol level

–  Not widely understood

Use link types to define protocols

28

text/html

Use OPTIONS to determine the right HTTP method to use with links

–  Allow: header in response lists allowed methods (for payment, PUT?)

Need to define link types for use with rel: microformats, RDF, etc

<html xmlns="http://www.w3.org/1999/xhtml”>
 <body>
 <div class="order”>
 <ul class="items”>
 <li class="item”>
 <p class=”isbn">1234567890</p>
 <p class="quantity">1</p>

 payment
 </div>

 </body>
</html>

29

application/vnd.orinoco+xml

Proprietary (vendor-specific) media type

–  Uses POX for business data

–  Uses (e.g.) Atom link elements for hypermedia control

<order xmlns=“http://schema.orinoco.com/order”>
 <items>
 <item quantity=“1” isbn=“1234567890”/>
 </items>
 <link href=“https://orinoco.com/payment/1234” rel=“payment”/>
 <status>open</status>
</order>

30

Link: header

GET /order/1234 HTTP/1.1
Host: orinoco.com

HTTP/1.1 200 OK
Content-Type: application/vnd.orinoco+xml
Link: <https://orinoco.com/payment/1234>; rel="payment”>

<order xmlns=“http://schema.orinoco.com/order”>
 <items>
 <item quantity=“1” isbn=“1234567890”/>
 </items>
</order>

31

Check order status

open

shipping

paid

delivered

check
status

change
order

pay

deliver

prepare

create
order

[success]

[failure] cancel

32

Check order status

Use GET

–  GET is idempotent

–  GET has no side-effects!

33

GET

GET /order/1234 HTTP/1.1
Host: orinoco.com

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: 107
Date: Tue, 30 Oct 2018 16:30:00 GMT

<order xmlns=“http://schema.orinoco.com/order”>
 <items>
 </items>
 <status>open</status>
</order>

34

GET

GET /order/9999 HTTP/1.1
Host: orinoco.com

HTTP/1.1 404 Not Found
Content-Length: 0
Date: Tue, 30 Oct 2018 16:30:00 GMT

35

Collections and Elements

Extra conventions for talking about collections of elements

–  An order can be considered to be a collection

–  An item in the order is an element of that collection

Some consensus of semantics of HTTP methods for these

In our case:

–  http://orinoco.com/order/ is a collection

–  http://orinoco.com/order/{order_id} is an element

36

RESTful Methods for Collections
Method Behaviour

GET List the members of the collection (list of URIs)

PUT Replace the entire collection with another collection

POST Create a new member in the collection and automatically assign
it a URI

DELETE Delete the entire collection

37

RESTful Methods for Collection Elements
Method Behaviour

GET Retrieve a representation of the specified element

PUT Replace the specified element of the collection, or if it doesn’t
exist create it

POST Treat the specified member as a collection and create a new
element in it

DELETE Delete the specified member of the collection

38

Orinoco Workflow

open

shipping

paid

delivered

GET /order/{order_id}
200 OK

PUT /order/{order_id}
200 OK

PUT /payment/{order_id}

deliver

prepare

POST /order
201 Created

201 Created

400 Bad Request DELETE /order/{order_id}
204 No Content

39

Further Reading

REST in Practice tutorial slides

–  http://www.slideshare.net/guilhermecaelum/rest-in-practice

Webber et al (2010) REST in Practice. Sebastopol, CA: O’Reilly Media

Documenting REST

41

Documentation

What are the key aspects of a RESTful interface?

How should we document each of these?

What does a developer need to know to use our service?

Identification

43

URIs

44

URI Parameters

Interaction

46

Methods

47

Status Codes

48

Headers
Mostly for Authorisation

•  OAuth 2.0, etc

Consider how the various Accept-*:
headers might be used.

Representation

50

Representation

51

Examples

52

HATEOAS

53

Listings

OpenAPI

55

OpenAPI

Originated with Swagger tool for designing RESTful APIs

Represents API descriptions in JSON or YAML (Yet Another Markup Language)

–  We’ll concentrate on the YAML serialization

56

OpenAPI metadata
OpenAPI description starts with:

–  Version number of OpenAPI in use

–  Simple metadata about the service in the info: block

openapi: 3.0.0
info:
 version: 1.0.0
 title: Orinoco API
 description: The API for the Orinoco online bookseller

57

Servers
API endpoints are defined relative to a base URI

–  Defined in OpenAPI using the servers: block

servers:
 - url: https://orinoco.com
 description: Live server
 _ url: https://test.orinoco.com
 description: Test server (uses dummy data)

58

Components
components: block used to define repeatedly-used information

–  Most often used to define format of message bodies

components:
 schemas:
 order:
 type: object
 properties:
 items:
 type: array
 item:
 type: string
 status:
 type: string

59

Paths

Lists available paths on the server

–  e.g. https://orinoco.com/order/1234

For each path, lists:

–  The methods which can be used on that path

–  The content of any request body which should accompany the method (for PUT, POST)

–  The responses which may be received from the method (including response bodies)

60

Path Example

paths:
 /order/{order_id}:
 get:
 description: Obtain information about an order
 parameters:
 - name: order_id
 in: path
 required: true
 schema:
 type: string

61

Path Example

paths:
 /order/{order_id}:
 get:
 ...
 responses:
 ‘200’:
 description: Successfully returned an order
 content:
 application/xml:
 schema:
 $ref: ‘#/components/schemas/order’

62

Summary

Documentation should cover all the bases of the web architecture

–  Identification – parameterised URIs

–  Interaction – HTTP methods, status codes and headers

–  Representation – formats for request and response, with examples

Listings of all of the above

63

RESTful API Examples

Twitter

https://developer.twitter.com/en/docs/api-reference-index

Paypal

https://developer.paypal.com/docs/api/payments/

Imgur

https://apidocs.imgur.com

Wordpress

https://developer.wordpress.org/rest-api/

64

Tools and Further Reading

Swagger API development tool

https://swagger.io/

Overview of OpenAPI

https://swagger.io/docs/specification/about/

OpenAPI Specification

https://github.com/OAI/OpenAPI-Specification

Next: CORS and Memento

