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From Databases to Data Streams
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Traditional DBMS makes several assumptions:
• persistent data storage

• relatively static records

• (typically) no predefined notion of time

• complex one-off queries
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From Databases to Data Streams
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Some applications have very different requirements:
• data arrives in real-time

• data is ordered (implicitly by arrival time or explicitly by timestamp)

• too much data to store!

• data never stops coming

• ongoing analysis of rapidly changing data
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Big Data – The Four Vs
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Volume
• Amount of data

Variety
• Semi-structured, unstructured, schema-free

Veracity
• Untrusted, inaccurate

Velocity
• Speed of operation, rate of analysis
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Example Application: MIDAS
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Application Domains
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• Network monitoring and traffic engineering

• Sensor networks, RFID tags

• Telecommunications call records

• Financial applications

• Web logs and click-streams

• Manufacturing processes
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Data Streams
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A (potentially unbounded) sequence of tuples

Transactional data streams: log interactions between entities
• Credit card: purchases by consumers from merchants

• Telecommunications: phone calls by callers to dialed parties

• Web: accesses by clients of resources at servers

Measurement data streams: monitor evolution of entity states
• Sensor networks: physical phenomena, road traffic

• IP network: traffic at router interfaces

• Earth climate: temperature, moisture at weather stations
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One-Time versus Continuous Queries 
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One-time queries

• Run once to completion over the current data set

Continuous queries

• Issued once and then continuously evaluated over a data stream
• “Notify me when the temperature drops below X”

• “Tell me when prices of stock Y > 300”
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Database Management System
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query processor

stored data 
on disk

query results
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Data Stream Management System (DSMS)
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query processor

continuous 
query

stream of 
results

data
streams

data
streams



14

DBMS versus DSMS

• Persistent relations 
(relatively static, stored)

• One-time queries

• Random access

• “Unbounded” disk store

• Only current state matters

• Transient streams 
(on-line analysis)

• Continuous queries (CQs)

• Sequential access

• Bounded main memory

• Historical data is important

DBMS DSMS



15

DBMS versus DSMS

• No real-time services

• Relatively low update rate

• Data at any granularity

• Assume precise data

• Access plan determined by query 
processor, physical DB design

• Real-time requirements

• Possibly multi-GB arrival rate

• Data at fine granularity

• Data stale/imprecise

• Unpredictable/variable data arrival and 
characteristics

DBMS DSMS
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A Motivation for Stream Processing
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Over the past twenty-five years:
• CPU performance has increased by a factor of >1,000,000

• Typical RAM capacity increased by a factor of >1,000,000

• RAM access time has decreased by a factor of >50,000

• Typical HD capacity increased by a factor of >50,000

• HD access time has decreased by a factor of ~10
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Architectural Issues

• Resource rich 
(memory, disk, computation)

• Extremely sophisticated query 
processing, analysis

• Useful to audit query results of data 
stream systems.

• Query Evaluation: Arbitrary

• Query Plan: Fixed.

• Resource limited
(memory, per-tuple computation)

• Reasonably complex, near real time, 
query processing

• Useful to identify what data to populate 
in database

• Query Evaluation: One pass

• Query Plan: Adaptive

DBMS DSMS



Query Processing
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Example: Continuous Query Language
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Queries produce/refer to relations and streams

Based on SQL, with the addition of:                                           
• Streams as new data type

• Continuous instead of one-time semantics

• Windows on streams (derived from SQL-99)

• Sampling on streams (basic)
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Query Processing
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Construct query plan based on relational operators, as in an RDBMS
• Selection

• Projection

• Join

• Aggregation (group by)

Combine plans from continuous queries (reduce redundancy)

Stream tuples through the resulting network of operators
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Tuple-at-a-time Operators
Evaluation requires consideration of only one tuple at a time

• Selection and projection

op

input stream output stream
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Full Relation Operators
Some full relation operators can work on a tuple at a time

• Count, sum, average, max, min (even with group by)

• (order by, however, can’t)

op

input stream output stream

accumulator
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Full Relation Operators
Other (binary) full relation operators can’t 

• Intersection, difference, product, join

• (union, however, can be evaluated tuple-by-tuple)

op

input stream

output stream
input stream
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Full Relation Operators
May block when applied to streams

• no output until entire input seen, but streams are unbounded

• joins may need to join tuples that are arbitrarily far apart

op

input stream

output stream
input stream
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Relation/Stream Translation
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Some relational operators can work directly on streams
• Selection, projection, union, some aggregates

Some relational operators need to work on relations
• Join, product, difference, intersection, other aggregates

Stream-to-relation operators
• Windows

Relation-to-stream operators
• Istream, Dstream, Rstream
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Windows
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Mechanism for extracting a finite relation (synopsis) from an infinite stream

Various window proposals for restricting operator scope.
• Windows based on ordering attribute (e.g. last 5 minutes of tuples)

• Windows based on tuple counts (e.g. last 1000 tuples)

• Windows based on explicit markers (e.g. punctuations)

• Variants (e.g., partitioning tuples in a window)

Various window behaviours
• Sliding, tumbling



27

Sliding Windows
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data stream

time

t1 t2 t3 t4t-4

windows

t0t-1t-2t-3
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Tumbling Windows
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data stream

time

windows

t1 t2 t3 t4t-4 t0t-1t-2t-3
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Join Evaluation
Consider a stream-based join operation:

• a conventional join over a pair of windows on the input streams

• outputs a stream of tuples joined from the input streams

⨝

input
stream

input
stream

output
stream
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Scalability and Completeness
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DBMS deals with finite relations 
• query evaluation should produce all results for a given query

DSMS deals with unbounded data streams
• may not be possible to return all results for a given query

• trade-off between resource use and completeness of result set

• size of buffers used for windows is one example of a parameter that affects resource use 
and completeness

• can further reduce resource use by randomly sampling from streams
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Relation-to-Stream Operators
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Insert Stream (Istream)
• Whenever a tuple is inserted into the relation, emit it on the stream

Delete Stream (Dstream)
• Whenever a tuple is deleted from the relation, emit it on the stream

Relation Stream (Rstream)
• At every time instant, emit every tuple in relation on the stream
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Example CQL Query
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SELECT Istream(*)
FROM S [rows unbounded]
WHERE S.A > 10

S is converted into a relation (of unbounded size!)

Resulting relation is converted back to a stream via Istream
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Example CQL Query
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SELECT * 
FROM S 
WHERE S.A > 10

S is a stream – query plan involves only selection, so window is now unnecessary
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Example CQL Query
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SELECT * 
FROM S1 [rows 1000], 

S2 [range 2 minutes] 
WHERE S1.A = S2.A AND S1.A > 10

Windows specified on streams
• Tuple-based sliding window – [rows 1000]

• Time-based sliding window – [range 2 minutes]
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Example CQL Query
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SELECT Rstream(S.A, R.B)
FROM S [now], R
WHERE S.A = R.A

Query probes a stored table R based on each tuple in stream S and streams the result 
• [now] – time-based sliding window containing tuples received in last time step
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Query Optimisation
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Traditionally relation cardinalities used in query optimiser
• Minimize the size of intermediate results.

Problematic in a streaming environment
• All streams are unbounded = infinite size!
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Query Optimisation
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Need novel optimisation objectives that are relevant when input sources are streams
• Stream rate based (e.g. NiagaraCQ)

• Resource-based (e.g. STREAM)

• Quality of service-based (e.g. Aurora)

Continuous adaptive optimisation
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Notable DSMS Projects
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• Aurora, Borealis (Brown/MIT) – sensor monitoring

• Niagara (OGI/Wisconsin) – Internet XML databases

• OpenCQ (Georgia) – triggers, incr. view maintenance

• STREAM (Stanford) – general-purpose DSMS

• Telegraph (Berkeley) – adaptive engine for sensors
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Stream Processing Frameworks
Open Source frameworks:

• Apache Flink

• Apache Kafka (developed by LinkedIn)

• Apache Storm (developed by Twitter)

• Apache Apex

Cloud-based frameworks

• AWS Kinesis

• Google Cloud Dataflow
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That's all folks!


