

Data Streams
COMP3211 Advanced Databases

Dr Nicholas Gibbins – nmg@ecs.soton.ac.uk

3

From Databases to Data Streams

3

Traditional DBMS makes several assumptions:
• persistent data storage

• relatively static records

• (typically) no predefined notion of time

• complex one-off queries

4

From Databases to Data Streams

4

Some applications have very different requirements:
• data arrives in real-time

• data is ordered (implicitly by arrival time or explicitly by timestamp)

• too much data to store!

• data never stops coming

• ongoing analysis of rapidly changing data

5

Big Data – The Four Vs

5

Volume
• Amount of data

Variety
• Semi-structured, unstructured, schema-free

Veracity
• Untrusted, inaccurate

Velocity
• Speed of operation, rate of analysis

6

Big Data – The Four Vs

6

Volume
• Amount of data

Variety
• Semi-structured, unstructured, schema-free

Veracity
• Untrusted, inaccurate

Velocity
• Speed of operation, rate of analysis

7

Example Application: MIDAS

7

8

Example Application: MIDAS

8

9

Application Domains

9

• Network monitoring and traffic engineering

• Sensor networks, RFID tags

• Telecommunications call records

• Financial applications

• Web logs and click-streams

• Manufacturing processes

10

Data Streams

10

A (potentially unbounded) sequence of tuples

Transactional data streams: log interactions between entities
• Credit card: purchases by consumers from merchants

• Telecommunications: phone calls by callers to dialed parties

• Web: accesses by clients of resources at servers

Measurement data streams: monitor evolution of entity states
• Sensor networks: physical phenomena, road traffic

• IP network: traffic at router interfaces

• Earth climate: temperature, moisture at weather stations

11

One-Time versus Continuous Queries

11

One-time queries

• Run once to completion over the current data set

Continuous queries

• Issued once and then continuously evaluated over a data stream
• “Notify me when the temperature drops below X”

• “Tell me when prices of stock Y > 300”

12

Database Management System

12

query processor

stored data
on disk

query results

13

Data Stream Management System (DSMS)

13

query processor

continuous
query

stream of
results

data
streams

data
streams

14

DBMS versus DSMS

• Persistent relations
(relatively static, stored)

• One-time queries

• Random access

• “Unbounded” disk store

• Only current state matters

• Transient streams
(on-line analysis)

• Continuous queries (CQs)

• Sequential access

• Bounded main memory

• Historical data is important

DBMS DSMS

15

DBMS versus DSMS

• No real-time services

• Relatively low update rate

• Data at any granularity

• Assume precise data

• Access plan determined by query
processor, physical DB design

• Real-time requirements

• Possibly multi-GB arrival rate

• Data at fine granularity

• Data stale/imprecise

• Unpredictable/variable data arrival and
characteristics

DBMS DSMS

16

A Motivation for Stream Processing

16

Over the past twenty-five years:
• CPU performance has increased by a factor of >1,000,000

• Typical RAM capacity increased by a factor of >1,000,000

• RAM access time has decreased by a factor of >50,000

• Typical HD capacity increased by a factor of >50,000

• HD access time has decreased by a factor of ~10

17

Architectural Issues

• Resource rich
(memory, disk, computation)

• Extremely sophisticated query
processing, analysis

• Useful to audit query results of data
stream systems.

• Query Evaluation: Arbitrary

• Query Plan: Fixed.

• Resource limited
(memory, per-tuple computation)

• Reasonably complex, near real time,
query processing

• Useful to identify what data to populate
in database

• Query Evaluation: One pass

• Query Plan: Adaptive

DBMS DSMS

Query Processing

19

Example: Continuous Query Language

19

Queries produce/refer to relations and streams

Based on SQL, with the addition of:
• Streams as new data type

• Continuous instead of one-time semantics

• Windows on streams (derived from SQL-99)

• Sampling on streams (basic)

20

Query Processing

20

Construct query plan based on relational operators, as in an RDBMS
• Selection

• Projection

• Join

• Aggregation (group by)

Combine plans from continuous queries (reduce redundancy)

Stream tuples through the resulting network of operators

21

Tuple-at-a-time Operators
Evaluation requires consideration of only one tuple at a time

• Selection and projection

op

input stream output stream

22

Full Relation Operators
Some full relation operators can work on a tuple at a time

• Count, sum, average, max, min (even with group by)

• (order by, however, can’t)

op

input stream output stream

accumulator

23

Full Relation Operators
Other (binary) full relation operators can’t

• Intersection, difference, product, join

• (union, however, can be evaluated tuple-by-tuple)

op

input stream

output stream
input stream

24

Full Relation Operators
May block when applied to streams

• no output until entire input seen, but streams are unbounded

• joins may need to join tuples that are arbitrarily far apart

op

input stream

output stream
input stream

25

Relation/Stream Translation

25

Some relational operators can work directly on streams
• Selection, projection, union, some aggregates

Some relational operators need to work on relations
• Join, product, difference, intersection, other aggregates

Stream-to-relation operators
• Windows

Relation-to-stream operators
• Istream, Dstream, Rstream

26

Windows

26

Mechanism for extracting a finite relation (synopsis) from an infinite stream

Various window proposals for restricting operator scope.
• Windows based on ordering attribute (e.g. last 5 minutes of tuples)

• Windows based on tuple counts (e.g. last 1000 tuples)

• Windows based on explicit markers (e.g. punctuations)

• Variants (e.g., partitioning tuples in a window)

Various window behaviours
• Sliding, tumbling

27

Sliding Windows

27

data stream

time

t1 t2 t3 t4t-4

windows

t0t-1t-2t-3

28

Tumbling Windows

28

data stream

time

windows

t1 t2 t3 t4t-4 t0t-1t-2t-3

29

Join Evaluation
Consider a stream-based join operation:

• a conventional join over a pair of windows on the input streams

• outputs a stream of tuples joined from the input streams

⨝

input
stream

input
stream

output
stream

30

Scalability and Completeness

30

DBMS deals with finite relations
• query evaluation should produce all results for a given query

DSMS deals with unbounded data streams
• may not be possible to return all results for a given query

• trade-off between resource use and completeness of result set

• size of buffers used for windows is one example of a parameter that affects resource use
and completeness

• can further reduce resource use by randomly sampling from streams

31

Relation-to-Stream Operators

31

Insert Stream (Istream)
• Whenever a tuple is inserted into the relation, emit it on the stream

Delete Stream (Dstream)
• Whenever a tuple is deleted from the relation, emit it on the stream

Relation Stream (Rstream)
• At every time instant, emit every tuple in relation on the stream

32

Example CQL Query

32

SELECT Istream(*)
FROM S [rows unbounded]
WHERE S.A > 10

S is converted into a relation (of unbounded size!)

Resulting relation is converted back to a stream via Istream

33

Example CQL Query

33

SELECT *
FROM S
WHERE S.A > 10

S is a stream – query plan involves only selection, so window is now unnecessary

34

Example CQL Query

34

SELECT *
FROM S1 [rows 1000],

S2 [range 2 minutes]
WHERE S1.A = S2.A AND S1.A > 10

Windows specified on streams
• Tuple-based sliding window – [rows 1000]

• Time-based sliding window – [range 2 minutes]

35

Example CQL Query

35

SELECT Rstream(S.A, R.B)
FROM S [now], R
WHERE S.A = R.A

Query probes a stored table R based on each tuple in stream S and streams the result
• [now] – time-based sliding window containing tuples received in last time step

36

Query Optimisation

36

Traditionally relation cardinalities used in query optimiser
• Minimize the size of intermediate results.

Problematic in a streaming environment
• All streams are unbounded = infinite size!

37

Query Optimisation

37

Need novel optimisation objectives that are relevant when input sources are streams
• Stream rate based (e.g. NiagaraCQ)

• Resource-based (e.g. STREAM)

• Quality of service-based (e.g. Aurora)

Continuous adaptive optimisation

38

Notable DSMS Projects

38

• Aurora, Borealis (Brown/MIT) – sensor monitoring

• Niagara (OGI/Wisconsin) – Internet XML databases

• OpenCQ (Georgia) – triggers, incr. view maintenance

• STREAM (Stanford) – general-purpose DSMS

• Telegraph (Berkeley) – adaptive engine for sensors

39

Stream Processing Frameworks
Open Source frameworks:

• Apache Flink

• Apache Kafka (developed by LinkedIn)

• Apache Storm (developed by Twitter)

• Apache Apex

Cloud-based frameworks

• AWS Kinesis

• Google Cloud Dataflow

40

Further Reading

40

A. Arasu et al. STREAM: The Stanford Data Stream Management System, Technical
Report, Stanford InfoLab, 2004.

A. Arasu, S. Babu and J. Widom. The CQL continuous query language: semantic
foundations and query execution, The VLDB Journal, 15(2), 121-142, 2006.

M. Cherniack et al, Scalable Distributed Stream Processing, Proceedings of the First
Biennial Conference on Innovative Data Systems Research (CIDR 2003), 2003.

That's all folks!

