

Before/Beyond the Relational
Model
COMP3211 Advanced Databases

Dr Nicholas Gibbins

3

The Road Less Travelled
3

4

The Road Less Travelled

4

Lectures so far have concentrated on relational databases
• Proposed by Ted Codd in 1969

• Developed by IBM for System R in the early 1970s

• blahblah SQL blahblah Ingres blahblah Oracle blahblah etc

What came before relational databases?

What can we learn from those systems?

What are the modern equivalents to those systems?

Hierarchical Databases

6

7

IBM Information Management System

7

Development started in 1966 to support the Apollo programme
• Originally IBM Information Control System and Data Language/Interface (ICS/DL/I)

• Used to track the bill of materials for the Saturn V and the CSM

Best known example of a hierarchical database
• Still in use!

• Fast on common tasks that change infrequently – complements DB2 (IBM’s relational
database)

8

Hierarchical Databases

8

A hierarchy is a natural way to model many real world systems
• Taxonomy (“is a kind of”)
• Meronymy (“is a part of”)

Many real-world examples
• Organisation charts
• Library classification systems
• Biological taxonomies
• Components of manufactures

Hierarchical DBs are built as trees of related record types connected by parent-child
relationships

9

Parent-Child Relationship Types

9

parent record type

child record type

DEPARTMENT

EMPLOYEE

1

n

10

Hierarchical Schemas

10

DEPARTMENT

EMPLOYEE PROJECT

WORKER

11

Occurrences

11

An occurrence or instance of the PCR type consists of:
• One record of the parent record type

• Zero or more records of the child record type

• (i.e. an instance is a record and all its children)

PCR types are referred to by naming the parent record type and child record type
• e.g. (Department, Employee)

A database may contain many hierarchical occurrences (occurrence trees)
• Each occurrence tree is a tree structure whose root is a single record from the root record

type of the schema

• The occurrence tree contains all the children (and further descendants) of the root record,
all the way to records of the leaf record types

12

Example Occurrences
(DEPARTMENT, EMPLOYEE)

12

Sales

Smith BrownJones

IT

Macdonald O'Neill

13

Example Occurrence Tree

Sales

Smith BrownJones DoodadsWidgets

Smith BrownJones Smith

14

Issues

14

• Multiple parents (M:N relationships) are not supported – strict hierarchy
• Can’t represent an employee that works in more than one department

• Record type can't be involved in more than one PCR as child
• Can't have both (DEPARTMENT, EMPLOYEE) and (PROJECT, EMPLOYEE)

• N-ary relationships (between more than two record types) are not supported

• Querying/update requires the programmer to explicitly navigate the hierarchy
• Poor data independence

Network Databases

16

Network Databases

16

• Standardised by the Conference on Data Systems Languages (CODASYL) committee in
1969
• (as also was COBOL)

• Addresses limitations of the hierarchical model

• Entities may be related to any number of other entities – no longer limited to a tree

• CA IDMS possibly the best-known example
• Again, many instances still running worldwide

17

Using Network Databases

17

• Record types linked in 1:N relationships

• There are no constraints on the number and direction of links between record types

• No need for a root record type

18

Set Types

18

DEPARTMENT

STUDENT

Owner type - 1

Member type - n

Set typeMAJOR_DEPT

19

Set Occurrences

19

Set occurrences (set instances) are composed of:
• One owner record from the owner record type

• Zero or more related member records from the member record type

A record from the member record type cannot exist in more than one occurrence of a
particular set type

• Maintains 1:N constraint on set types

20

Representing M:N Relationships
Set types can only represent 1:N relationships, yet many real-world relationships are
M:N

• Use a linking or dummy record to join two record types in an M:N relationship

20

DEPARTMENT

STUDENT

Linking record
D_R

REGISTRATION

S_R

21

Issues

21

• Easier to model systems with networks than with hierarchies

• Can deal with M:N or N-ary relationships

But

• Querying/update still requires the programmer to explicitly navigate the hierarchy –
poor data independence

Why should I care?

23

Those who cannot remember
the past are condemned to

repeat it.

George Santayana (1863-1952)

24

Native XML Databases

24

• Conceptual descendent of hierarchical DBs

• Define a logical model for an XML document

• Store and retrieve documents according to that model
• Elements and attributes
• Plain text content (PCDATA)
• Ordering of elements (document order)

• Common models
• XPath data model
• XML Infoset
• XML Document Object Model (DOM)

25

Example XML Database

25

<company>
<department dname="Sales" mgrname="Smith, J">

<employee name="Smith, J" birthdate="1969-05-23"/>
<employee name="Jones, P" birthdate="1961-02-22"/>
<employee name="Brown, M" birthdate="1973-06-14"/>
<project pname="Widgets" status="current"

location="Manchester">
<worker name="Smith, J" hours="20"/>
<worker name="Jones, P" hours="40"/>

</project>
<project pname="Doodads" status="expired"

location="London">
<worker name="Smith, J" hours="20"/>
<worker name="Brown, M" hours="40"/>

</project>
</department>

</company>

26

XQuery example

26

<dl>
{
for $w in
document("company.xml")//project[@status="current"]/worker

where $w/@hours>20
return <dt>$w/@name</dt><dd>$w/@hours</dd>

}
</dl>

27

XQuery example

27

<dl>
{
for $w in
document("company.xml")//project[@status="current"]/worker

where $w/@hours>20
return <dt>$w/@name</dt><dd>$w/@hours</dd>

}
</dl>

<dl>
<dt>Smith, J</dt><dd>20</dd>
<dt>Jones, P</dt><dd>40</dd>

</dl>

Beyond the Relational Model

29

So you have some data...

29

Relational Databases solve most data problems:
• Persistence

• We can store data, and it will remain stored!

• Integration

• We can integrate lots of different apps through a central DB

• SQL

• Standard(ish), well understood, very expressive

• Transactions

• ACID transactions, strong consistency

A few key trends and issues are motivating change in how we store data:
• The impedance mismatch problem

• Increasing volume of data and traffic

30

The impedance mismatch problem

30

We typically structure data in memory in an object-oriented fashion
• based on software engineering principles of abstraction, encapsulation and inheritance

We typically use RDBMSes for persistent storage on disc
• relational model based on set theory

These are fundamentally different approaches to structuring data

Mapping from one world to the other has problems

31

Impedance mismatch

31

ID: 1001

USER: Steve

Games Played:

Teams:

Name: Killer Bee Keepers
Icon:
http://imgur.com/a/...

Date Res K D A

01/04/2009 WIN 20 2 10

01/05/2009 LOOSE 5 22 3

Games Table

Player Table

Team Table

Player/Game

Player/Team

32

Increased data volume

32

We are creating/storing/processing more data than ever before

“From 2005 to 2020, the digital universe will grow by a factor of 300, from 130
exabytes to 40,000 exabytes, or 40 trillion gigabytes (more than 5,200 gigabytes for
every man, woman, and child in 2020). From now until 2020, the digital universe will
about double every two years.”

http://www.emc.com/leadership/digital-universe/index.htm

33

Dealing with increased data volume
Two options when dealing with these
trends:

1. Build bigger database machines
• This can be expensive

• Fundamental limits to machine size

2. Build clusters of smaller machines
• Lots of small machines (commodity

machines)

• Each machine is cheap, potentially
unreliable

• Needs a DBMS which understands clusters

34

Relational Databases suck…

34

There is a common perception that RDBMSes have fundamental issues:

In dealing with (horizontal) scale
• Designed to work on single, large machines

• Difficult to distribute effectively

In dealing with the impedance mismatch
• We create data structures in memory and then rip them apart to stick them in an RDBMS

• Relational data models often seem "unnatural" (normalisation seems unintuitive)

• Uncomfortable to program with (joins and ORM etc.)

The NoSQL Movement

36

NoSQL – A movement

36

NoSQL came to address
• “web-scale problems”

• … impedance mismatch on the way

Key attributes include:
• Non-Relational (though they can be, but aren’t good at it)

• Schema-Free (except the implicit schema, application side)

• Inherently Distributed (in different ways, some moreso than others)

• Open Source (mostly… e.g. Oracle’s NoSQL)

37

Defining NoSQL

37

Quite hard to define a movement based around a negative

Is a CSV file NoSQL?
(How about a turnip?)

How about a non-relational database from the 60s/70s/80s/90s
(IMS, IDMS, MUMPS, CLOB, XMLDB etc.)

NoSQL is not easy to define
…but many folks have certainly tried!

38

Some NoSQL Definitions

38

“Next Generation Databases mostly addressing some of the points:
being non-relational, distributed, open-source and horizontally scalable.”

- Stefan Edlich (nosql-database.org)

39

Some NoSQL Definitions

39

"NoSQL: a broad class of data management systems where
the data is partitioned across a set of servers,
where no server plays a privileged role."

- Emin Gün Sirer (hackingdistributed.com)

40

Some NoSQL Definitions

40

“[To organise a meetup in the late 2000s]… you need a
twitter #hashtag…That’s all #nosql was ever meant to be,

a twitter hashtag to organise a single meetup at one point in time”

- Martin Fowler (goto; 2012)

ACID, BASE and CAP

42

ACID – A Recap

42

In an ideal world, database transactions should be:

• Atomic
Entire transaction succeeds or the entire transactions rolls back

• Consistent
A transaction must leave the database “valid” re: some defined rules

• Isolated
Concurrent interactions behave as though they occurred serially

• Durable
Once committed, transactions survive power loss, acts of god etc.

Considered a key requirement for RDBMSes

43

The CAP Theorem – a Recap

43

You can only ever have two of the following three:
• Consistent: writes are atomic, all subsequent requests retrieve the new value

• Available: the database will always return a value so long as the server is running

• Partition Tolerant: the system will still function even if the cluster network is partitioned
(i.e. the cluster loses contact with parts of itself)

To put it a different way, partitions force us to choose one of:
• Consistency (i.e. we disallow writes during the partition)

• Availability (i.e. we allow writes during a partition)

Gilbert, S. and Lynch, N. (2002) Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services. ACM SIGACT News
33(2), pp.51-59.

4444

45

BASE – An alternative to ACID

45

A gratuitous backronym:

• Basic Availability
The application works basically all the time

• Soft-state
Does not have to be consistent all the time

• Eventual consistency
But will be in some known state eventually

46

Eventual Consistency (weak mutual consistency)

46

If we write to a replicated data item, updates to the replicas need not happen during
the lifetime of the transaction, but should happen eventually

From Amazon’s Dynamo paper:

“the storage system guarantees that if no new updates are made to the object,
eventually all accesses will return the last updated value.”

Two common approaches:
• MVCC

• Vector Clocks

47

Multi-Version Concurrency Control

47

Commonly used by NoSQL document databases
• Like a version control system

• Writes without locks

• Multiple versions of documents

Distributed Incremental Replication
• Different versions on different machines

• Collisions detected during replication

• App developer can be informed/decide on collisions

Used by: CouchDB

48

Vector Clocks

48

An extension of Lamport timestamps

Represent the order of events in a distributed system

Vector clocks can be used to:
• Identify the provenance of an item of data

• Decide order in which data was changed

• Help resolve conflicts

• Flag inconsistencies for app specific decisions

Used by: Amazon’s Dynamo and Riak

NoSQL Databases

50

NoSQL Databases

51

NoSQL Varieties

51

• Key-Value stores (Amazon Dynamo)

• Document Oriented (Lotus notes? Bit of a stretch! Still cool)

• Column Oriented (Google’s BigTable)

• Graph DBs (Triples! SPARQL!)

For a roundup see:
http://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis

http://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis

52

Key-Value Stores

52

From an API perspective, a hash table with persistence

Use a key (usually a string), ask the database for the corresponding value

The value can be anything (text, structure, an image etc.)

Database often unaware of value content (but not always)

53

Examples

• Buckets/Keys/Values/Links

• Query with key, process with map-
reduce

• Secondary Indexes (metadata)

• “Loves the Web” (but they all say this)

• More understanding of value types
(strings, integers, lists, hashes)

• In memory (very fast)

Riak Redia

54

Document Databases

54

Database as storage of a mass of different documents

A document…
• … is a complex data structure

• … can contain completely different data from other documents

Document data stores understand their documents
• Queries can run against values of document fields

• Indexes can be constructed for document fields

55

Document Databases

55

{
"_id": "1",

"name": "steve",
"games_owned": [
{"name":"Super Meat Boy"},
{"name":"FTL"},

],

}v

{
"_id": "2",
"name": "darren",
"handle":"zerocool",
"games_owned": [
{"name":“FTL"},
{"name":“Assassin’s Creed 3“, “dev”: “ubisoft”},

],
}

56

Examples

• Master/Slave design

• .find() queries like ORM

• Geo-spatial indexing

• Master/master

• Only map-reduce queries
• Weird but pretty cool, see:

http://sitr.us/2009/06/30/database-
queries-the-couchdb-way.html

• Favours availability to consistency (more
on this in a bit)

MongoDB CouchDB

http://sitr.us/2009/06/30/database-queries-the-couchdb-way.html

57

Column Databases

57

Data is held in rows

• Rows have keys associated

• Rows contain “column families”

• Column families contain the actual columns, thus data

No Schema (Columns in a family change per row)

On Querying:

• Key lookup is fast

• Batch processing via map-reduce

• All else involves row scans

58

Column Databases

58

SOME_KEY

Name “darren”

Team “killer bee…"

… …

game1 <gamedata>

game2 <gamedata>

… …

game3 <gamedata>

Player Details
Column
family

Games
Column
Family

59

Examples

• Uses HDFS for storage, Hadoop for
processing

• Built to treasure consistency over
availability

• Supports key ranges

• Works over a variety of processing
architectures
(Hadoop, Storm, etc.)

Hbase Cassandra

60

Graph Databases

60

Focus on modelling the data’s structure

Graphs are composed of Vertices and Edges
• Vertices are connected by edges

• Edges have labels and direction

• Both have properties

Queried with graph traversal API or graph query language
• Cypher, SPARQL

Can be much faster at querying graph like data structures
• Like friends of friends or web links

61

Graph Databases

61

The Matrix Revolution

Laurence Fishburne

The Matrix

The Matrix Reloaded

Keanu Reeves

Carrie-Anne Moss

Acts In

Acts In

Acts In

Act
s I

n

Acts In

Acts In

Acts In

Acts
 In

Act
s I

n

62

Examples

62

Neo4j
• Not distributed

• ACID transactions

63

From NoSQL to NewSQL

64

The NoSQL
discussion has

nothing to do with
SQL

Michael Stonebraker

65

The NoSQL performance argument

65

1. I use MySQL to store my data

2. MySQL’s performance isn’t adequate

3. Partitioning my data across multiple sites is hard!

4. I don’t want to pay license fees for an enterprise RDBMS

∴

NoSQL is the way to go!

66

The NoSQL Performance Argument

66

Transaction cost in OLTP database consists largely of:
• Logging (write to database, write to log)

• Locking (recording locks in lock table)

• Latching (updating shared data structure: B-trees, lock table, etc)

• Buffer Management (buffer pool containing cached disk pages)

“The single-node performance of a NoSQL, disk-based, non-ACID, multithreaded
system is limited to be a modest factor faster than a well-designed stored-procedure
SQL OLTP engine” – the overhead isn’t due to SQL

67

NoSQL in the Enterprise

67

No ACID equals No Interest
• Stored data is mission critical, inconsistency is dangerous

A Low-Level Query Language is Death
• Record-at-a-time processing (c.f. IMS, CODASYL) requires far greater programming effort -

declarative languages like SQL are preferable

NoSQL means No Standards
• Many different NoSQL databases, each with a different interface, data model, etc – how do

you migrate from one to another?

68

Tick-tock, tick-tock...
...and back to relational databases again!

NewSQL
• The scale-out OLTP performance of NoSQL...

• ...with the SQL support and ACID guarantees of RDBMS

Further Reading

70

Some further reading...

70

The structure/content of these slides are covered in greater depth in:

“Seven Databases in Seven Weeks” by Eric Redmond

“NoSQL Distilled” by Martin Fowler

Mike Stonebraker’s blogs for CACM

https://cacm.acm.org/blogs/blog-cacm/?author=Michael+Stonebraker

71

… and some watching!

71

“Introduction to NoSQL” – Martin Fowler @ goto; 2012
http://www.youtube.com/watch?v=qI_g07C_Q5I

“The People vs. NoSQL Databases” – Panel Discussion @ goto; 2012
http://www.youtube.com/watch?v=191kCkNya5Q (NSFW language)

“MongoDB: It’s Not Just About Big Data” – Will Shulman
http://www.youtube.com/watch?v=b1BZ9YFsd2o

http://www.youtube.com/watch?v=qI_g07C_Q5I
http://www.youtube.com/watch?v=191kCkNya5Q
http://www.youtube.com/watch?v=b1BZ9YFsd2o

Next Lecture: Data Streams

