

Distributed Databases
COMP3211 Advanced Databases

Dr Nicholas Gibbins – nmg@ecs.soton.ac.uk

3

Overview
Fragmentation

• Horizontal (primary and derived), vertical, hybrid

Query processing
• Localisation, optimisation (semijoins)

Concurrency control
• Centralised 2PL, Distributed 2PL, deadlock

Reliability
• Two Phase Commit (2PC)

Replication

The CAP Theorem

4

What is a distributed database?
A collection of sites connected by a communications network

Each site is a database system in its own right, but the sites have agreed to work
together

A user at any site can access data anywhere as if data were all at the user's own site

DDBMS Principles

6

Local autonomy
The sites in a distributed database system should be autonomous or independent of
each other

Each site should provide its own security, locking, logging, integrity, and recovery.
Local operations use and affect only local resources and do not depend on other sites

7

No reliance on a central site
A distributed database system should not rely on a central site, which may be a single
point of failure or a bottleneck

Each site of a distributed database system provides its own security, locking, logging,
integrity, and recovery, and handles its own data dictionary. No central site must be
involved in every distributed transaction.

8

Continuous operation
A distributed database system should never require downtime

A distributed database system should provide on-line backup and recovery, and a full
and incremental archiving facility. The backup and recovery should be fast enough to
be performed online without noticeable detrimental affect on the entire system
performance.

9

Location independence
Applications should not know, or even be aware of, where the data are physically
stored; applications should behave as if all data were stored locally

Location independence allows applications and data to be migrated easily from one site
to another without modifications.

10

Fragmentation independence
Relations can be divided into fragments and stored at different sites

Applications should not be aware of the fact that some data may be stored in a
fragment of a table at a site different from the site where the table itself is stored.

11

Replication independence
Relations and fragments can be stored as many distinct copies on different sites

Applications should not be aware that replicas of the data are maintained and
synchronized automatically.

12

Distributed query processing
Queries are broken down into component transactions to be executed at the
distributed sites

13

Distributed transaction management
A distributed database system should support atomic transactions

Critical to database integrity; a distributed database system must be able to handle
concurrency, deadlocks and recovery.

14

Hardware independence
A distributed database system should be able to operate and access data spread
across a wide variety of hardware platforms

A truly distributed DBMS system should not rely on a particular hardware feature, nor
should it be limited to a certain hardware architecture.

15

Operating system independence
A distributed database system should be able to run on different operating systems

16

Network independence
A distributed database system should be designed to run regardless of the
communication protocols and network topology used to interconnect sites

17

DBMS independence
An ideal distributed database system must be able to support interoperability between
DBMS systems running on different nodes, even if these DBMS systems are unalike

All sites in a distributed database system should use common standard interfaces in
order to interoperate with each other.

18

Distributed Databases vs. Parallel Databases

• Local autonomy

• No central site

• Continuous operation

• Location independence

• Fragmentation independence

• Replication independence

• Distributed query processing

• Distributed transactions

• Hardware independence

• Operating system independence

• Network independence

• DBMS independence

Distributed Databases

19

Distributed Databases vs. Parallel Databases

• Local autonomy

• No central site

• Continuous operation

• Location independence

• Fragmentation independence

• Replication independence

• Distributed query processing

• Distributed transactions

• Hardware independence

• Operating system independence

• Network independence

• DBMS independence

Parallel Databases

Fragmentation

21

Why Fragment?
Fragmentation allows:

• localisation of the accesses of relations by applications

• parallel execution (increases concurrency and throughput)

22

Fragmentation Approaches
Horizontal fragmentation

Each fragment contains a subset of the tuples of the global relation

Vertical fragmentation
Each fragment contains a subset of the attributes of the global relation

global relation vertical
fragmentation

horizontal
fragmentation

23

Decomposition
Relation 𝑅 is decomposed into fragments 𝐹! = {𝑅", 𝑅#, … , 𝑅$}

Decomposition (horizontal or vertical) can be expressed in terms of relational algebra
expressions

24

Completeness
𝐹! is complete if each data item 𝑑% in 𝑅 is found in some 𝑅&

25

Reconstruction
𝑅 can be reconstructed if it is possible to define a relational operator ▽ such that
𝑅 =▽ 𝑅%, for all 𝑅𝑖 ∈ 𝐹!

Note that ▽ will be different for different types of fragmentation

26

Disjointness
𝐹𝑅 is disjoint if every data item 𝑑𝑖 in each 𝑅𝑗 is not in any 𝑅𝑘
where 𝑘 ≠ 𝑗

Note that this is only strictly true for horizontal decomposition

For vertical decomposition, primary key attributes are typically repeated in all
fragments to allow reconstruction; disjointness is defined on non-primary key
attributes

27

Horizontal Fragmentation
Each fragment contains a subset of the tuples of the global relation

Two versions:
• Primary horizontal fragmentation

performed using a predicate defined on the relation being partitioned

• Derived horizontal fragmentation
performed using a predicate defined on another relation

28

Primary Horizontal Fragmentation
Decomposition

𝐹𝑅 = {𝑅𝑖 ∶ 𝑅𝑖 = 𝜎𝑓!(𝑅)}
where 𝑓𝑖 is the fragmentation predicate for 𝑅𝑖

Reconstruction

𝑅 = +
%!∈'"

𝑅(

Disjointness
FR is disjoint if the simple predicates used in fi are mutually exclusive

Completeness for primary horizontal fragmentation is beyond the scope of this
lecture...

29

Derived Horizontal Fragmentation
Decomposition

𝐹% = {𝑅(∶ 𝑅(= 𝑅 ⋉ 𝑆}
where 𝐹𝑆 = {𝑆(∶ 𝑆(= 𝜎𝑓!(𝑆) } and 𝑓𝑖 are the fragmentation predicates for the primary horizontal
fragmentation of 𝑆

Reconstruction

𝑅 = +
%!∈'"

𝑅(

Completeness and disjointness for derived horizontal fragmentation are beyond the
scope of this lecture...

30

Vertical Fragmentation
Decomposition

𝐹% = {𝑅𝑖 ∶ 𝑅𝑖 = 𝜋𝑎!(𝑅)}, where 𝑎𝑖 is a subset of the attributes of 𝑅

Completeness
𝐹𝑅 is complete if each attribute of 𝑅 appears in some 𝑎𝑖

Reconstruction
𝑅 = ⨝𝐾 𝑅𝑖 for all 𝑅𝑖 ∈ 𝐹𝑅
where 𝐾 is the set of primary key attributes of 𝑅

Disjointness
𝐹𝑅 is disjoint if each non-primary key attribute of R appears in at most one 𝑎𝑖

31

Hybrid Fragmentation
Horizontal and vertical fragmentation may be combined:

• Vertical fragmentation of horizontal fragments

• Horizontal fragmentation of vertical fragments

Query Processing

33

Localisation
Fragmentation expressed as relational algebra expressions

Global relations can be reconstructed using these expressions
• a localisation program

Naïvely, generate distributed query plan by substituting localisation programs for
relations

• use reduction techniques to optimise queries

34

Reduction for Horizontal Fragmentation
Given a relation 𝑅 fragmented as 𝐹𝑅 = {𝑅1, 𝑅2, … , 𝑅𝑛}

Localisation program is 𝑅 = 𝑅1 ∪ 𝑅2 ∪⋯∪ 𝑅𝑛

Reduce by identifying fragments of localised query that give empty relations

Two cases to consider:
• reduction with selection

• reduction with join

35

Horizontal Selection Reduction
Given horizontal fragmentation of 𝑅 such that 𝑅𝑗 = 𝜎𝑝"(𝑅):

𝜎𝑝(𝑅𝑗) = ∅ if ∀𝑥 ∈ 𝑅,¬(𝑝(𝑥) ∧ 𝑝𝑗(𝑥))
where pj is the fragmentation predicate for Rj

36

Horizontal Selection Reduction
Given horizontal fragmentation of 𝑅 such that 𝑅𝑗 = 𝜎𝑝"(𝑅):

𝜎𝑝(𝑅𝑗) = ∅ if ∀𝑥 ∈ 𝑅,¬(𝑝(𝑥) ∧ 𝑝𝑗(𝑥))
where pj is the fragmentation predicate for Rj

𝜎𝑝

𝑅
query

37

Horizontal Selection Reduction
Given horizontal fragmentation of 𝑅 such that 𝑅𝑗 = 𝜎𝑝"(𝑅):

𝜎𝑝(𝑅𝑗) = ∅ if ∀𝑥 ∈ 𝑅,¬(𝑝(𝑥) ∧ 𝑝𝑗(𝑥))
where pj is the fragmentation predicate for Rj

𝜎𝑝

𝑅
query

∪

𝑅1 𝑅𝑛

𝜎𝑝

𝑅2 ...
localised query

38

Horizontal Selection Reduction
Given horizontal fragmentation of 𝑅 such that 𝑅𝑗 = 𝜎𝑝"(𝑅):

𝜎𝑝(𝑅𝑗) = ∅ if ∀𝑥 ∈ 𝑅,¬(𝑝(𝑥) ∧ 𝑝𝑗(𝑥))
where pj is the fragmentation predicate for Rj

𝜎𝑝

𝑅
query

∪

𝑅1 𝑅𝑛

𝜎𝑝

𝑅2 ...
localised query

𝑅2

𝜎𝑝

reduced query

39

Horizontal Join Reduction
Recall that joins distribute over unions:

(𝑅1 ∪ 𝑅2) ⨝ 𝑆 ≡ (𝑅1⨝𝑆) ∪ (𝑅2⨝𝑆)

Given fragments Ri and Rj defined with predicates pi and pj :

𝑅𝑖⨝𝑅𝑗 = ∅ if ∀𝑥 ∈ 𝑅%, ∀𝑦 ∈ 𝑅& ¬(𝑝%(𝑥) ∧ 𝑝𝑗(𝑦))

40

Horizontal Join Reduction
Recall that joins distribute over unions:

(𝑅1 ∪ 𝑅2) ⨝ 𝑆 ≡ (𝑅1⨝𝑆) ∪ (𝑅2⨝𝑆)

Given fragments Ri and Rj defined with predicates pi and pj :

𝑅𝑖⨝𝑅𝑗 = ∅ if ∀𝑥 ∈ 𝑅%, ∀𝑦 ∈ 𝑅& ¬(𝑝%(𝑥) ∧ 𝑝𝑗(𝑦))

⨝

query

𝑅 𝑆

41

Horizontal Join Reduction
Recall that joins distribute over unions:

(𝑅1 ∪ 𝑅2) ⨝ 𝑆 ≡ (𝑅1⨝𝑆) ∪ (𝑅2⨝𝑆)

Given fragments Ri and Rj defined with predicates pi and pj :

𝑅𝑖⨝𝑅𝑗 = ∅ if ∀𝑥 ∈ 𝑅%, ∀𝑦 ∈ 𝑅& ¬(𝑝%(𝑥) ∧ 𝑝𝑗(𝑦))

⨝

query

𝑅 𝑆

⨝

localised query

∪

𝑅1 𝑅2 𝑆𝑅𝑛…

42

Horizontal Join Reduction
Recall that joins distribute over unions:

(𝑅1 ∪ 𝑅2) ⨝ 𝑆 ≡ (𝑅1⨝𝑆) ∪ (𝑅2⨝𝑆)

Given fragments Ri and Rj defined with predicates pi and pj :

𝑅𝑖⨝𝑅𝑗 = ∅ if ∀𝑥 ∈ 𝑅%, ∀𝑦 ∈ 𝑅& ¬(𝑝%(𝑥) ∧ 𝑝𝑗(𝑦))

⨝

query

𝑅 𝑆

∪

reduced query

⨝

𝑅3 𝑆

⨝

𝑅5 𝑆

⨝

localised query

∪

𝑅1 𝑅2 𝑆𝑅𝑛…

43

Reduction for Vertical Fragmentation
Given a relation R fragmented as 𝐹𝑅 = {𝑅1, 𝑅2, … , 𝑅𝑛}

Localisation program is 𝑅 = 𝑅1⨝𝑅2⨝ … ⨝𝑅𝑛

Reduce by identifying useless intermediate relations

One case to consider:
• reduction with projection

44

Vertical Projection Reduction
Given a relation R with attributes 𝐴 = {𝑎1, 𝑎2, … , 𝑎$}
vertically fragmented as 𝑅𝑖 = 𝜋𝐴!(𝑅)where 𝐴𝑖 ⊆ 𝐴
𝜋',)(𝑅𝑖) is useless if 𝐷 ⊈ 𝐴%
𝐷 is set of projection attributes

45

Vertical Projection Reduction
Given a relation R with attributes 𝐴 = {𝑎1, 𝑎2, … , 𝑎$}
vertically fragmented as 𝑅𝑖 = 𝜋𝐴!(𝑅)where 𝐴𝑖 ⊆ 𝐴
𝜋',)(𝑅𝑖) is useless if 𝐷 ⊈ 𝐴%
𝐷 is set of projection attributes

𝜋5,7

𝑅
query

46

Vertical Projection Reduction
Given a relation R with attributes 𝐴 = {𝑎1, 𝑎2, … , 𝑎$}
vertically fragmented as 𝑅𝑖 = 𝜋𝐴!(𝑅)where 𝐴𝑖 ⊆ 𝐴
𝜋',)(𝑅𝑖) is useless if 𝐷 ⊈ 𝐴%
𝐷 is set of projection attributes

𝜋5,7

𝑅
query

⨝

𝑅1 𝑅𝑛

𝜋5,7

𝑅2 ...
localised query

47

Vertical Projection Reduction
Given a relation R with attributes 𝐴 = {𝑎1, 𝑎2, … , 𝑎$}
vertically fragmented as 𝑅𝑖 = 𝜋𝐴!(𝑅)where 𝐴𝑖 ⊆ 𝐴
𝜋',)(𝑅𝑖) is useless if 𝐷 ⊈ 𝐴%
𝐷 is set of projection attributes

𝜋5,7

𝑅
query

⨝

𝑅1 𝑅𝑛

𝜋5,7

𝑅2 ...
localised query

𝑅2

𝜋5,7

reduced query

Distributed Joins

49

The Distributed Join Problem
We have two relations, 𝑅 and 𝑆, each stored at a different site

Where do we perform the join 𝑅 ⋈ 𝑆?

Site 1

𝑅 ⋈ 𝑆

Site 2

𝑅 𝑆

50

Site 2

The Distributed Join Problem
We can move one relation to the other site and perform the join there

• CPU cost of performing the join is the same regardless of site

• Communications cost depends on the size of the relation being moved

Site 1

⋈
𝑅 𝑆

51

Site 2

The Distributed Join Problem
𝐶𝑜𝑠𝑡𝐶𝑂𝑀 = 𝑠𝑖𝑧𝑒(𝑅) = 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦(𝑅) ∗ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑅)

if 𝑠𝑖𝑧𝑒(𝑅) < 𝑠𝑖𝑧𝑒(𝑆) then move 𝑅 to site 2,
otherwise move 𝑆 to site 1

Site 1

⋈
𝑅 𝑆

52

Semijoin Reduction
We can further reduce the communications cost by only moving that part of a relation
that will be used in the join

Use a semijoin...

Site 1

𝑅 ⋈ 𝑆

Site 2

𝑅 𝑆

53

Semijoins
Recall that 𝑅 ⋉* 𝑆 ≡ 𝜋𝑅(𝑅 ⋈* 𝑆)

where 𝑝 is a predicate defined over 𝑅 and 𝑆
𝜋𝑅 projects out only those attributes from 𝑅

𝑠𝑖𝑧𝑒(𝑅 ⋉* 𝑆) < 𝑠𝑖𝑧𝑒(𝑅 ⋈* 𝑆)
𝑅 ⋈* 𝑆 ≡ (𝑅 ⋉* 𝑆) ⋈* 𝑆
𝑅 ⋈* 𝑆 ≡ 𝑅 ⋈* (𝑅 ⋊* 𝑆)
𝑅 ⋈* 𝑆 ≡ (𝑅 ⋉* 𝑆) ⋈* (𝑅 ⋊* 𝑆)

54

Semijoin Reduction
𝑅 ⋉* 𝑆 ≡ 𝜋𝑅(𝑅 ⋈* 𝑆)
𝑅 ⋉* 𝑆 ≡ 𝜋𝑅(𝑅 ⋈* 𝜋𝑝(𝑆))

where 𝜋𝑝(𝑆) projects out from 𝑆 only the attributes used in predicate 𝑝

Site 1 Site 2

𝑅 𝑆

55

Semijoin Reduction, step 1
Site 2 sends 𝜋𝑝(𝑆) to site 1

Site 1 Site 2

𝑅 𝑆
𝜋𝑝(𝑆)

56

Semijoin Reduction, step 2
Site 1 calculates 𝑅 ⋉* 𝑆 ≡ 𝜋𝑅(𝑅 ⋈* 𝜋𝑝(𝑆))

Site 1 Site 2

𝑅 𝑆
𝑅 ⋉9 𝑆

57

Semijoin Reduction, step 3
Site 1 sends 𝑅 ⋉* 𝑆 to site 2

Site 1 Site 2

𝑅 𝑆
𝑅 ⋉9 𝑆

𝑅 ⋉1 𝑆

58

Semijoin Reduction, step 4

Site 2 calculates 𝑅 ⋈* 𝑆 ≡ 𝑅 ⋉* 𝑆 ⋈* 𝑆

Site 1 Site 2

𝑅 𝑆
𝑅 ⋉9 𝑆 𝑅 ⋈9 𝑆

59

Semijoin Reduction
𝐶𝑜𝑠𝑡𝐶𝑂𝑀 = 𝑠𝑖𝑧𝑒(𝜋𝑝(𝑆)) + 𝑠𝑖𝑧𝑒(𝑅 ⋉* 𝑆)

This approach is better if 𝑠𝑖𝑧𝑒(𝜋𝑝(𝑆)) + 𝑠𝑖𝑧𝑒(𝑅 ⋉* 𝑆) < 𝑠𝑖𝑧𝑒(𝑅)

Site 1 Site 2

𝑅 𝑆
𝑅 ⋉9 𝑆 𝑅 ⋈9 𝑆

Concurrency Control

61

Distributed Transactions
Transaction processing may be spread across several sites in the distributed database

• The site from which the transaction originated is known as the coordinator
• The sites on which the transaction is executed are known as the participants

C

P

P

P

transaction

62

Distribution and ACID
Non-distributed databases aim to maintain isolation

• Isolation: A transaction should not make updates externally visible until committed

Distributed databases commonly use two-phase locking (2PL) to preserve isolation

• 2PL ensures serialisability, the highest isolation level

63

Two-Phase Locking
Two phases:

• Growing phase: obtain locks, access data items

• Shrinking phase: release locks

Guarantees serialisable transactions

63

#locks

timeBEGIN END
LOCK
POINT

growing
phase

shrinking
phase

64

Distribution and Two-Phase Locking

64

In a non-distributed database, locking is controlled by a lock manager

Two main approaches to implementing two-phase locking in a distributed database:
• Centralised 2PL (C2PL)

Responsibility for lock management lies with a single site

• Distributed 2PL (D2PL)
Each site has its own lock manager

65

Centralised Two-Phase Locking (C2PL)
Coordinating site runs transaction
manager TM

Participant sites run data processors DP

Lock manager LM runs on central site

DP TM LM

66

Centralised Two-Phase Locking (C2PL)
Coordinating site runs transaction
manager TM

Participant sites run data processors DP

Lock manager LM runs on central site

1. TM requests locks from LM

DP TM LM

lock request

67

Centralised Two-Phase Locking (C2PL)
Coordinating site runs transaction
manager TM

Participant sites run data processors DP

Lock manager LM runs on central site

1. TM requests locks from LM

2. If granted, TM submits operations to
processors DP

DP TM LM

lock request

lock grantedoperation

68

Centralised Two-Phase Locking (C2PL)
Coordinating site runs transaction
manager TM

Participant sites run data processors DP

Lock manager LM runs on central site

1. TM requests locks from LM

2. If granted, TM submits operations to
processors DP

3. When DPs finish, TM sends message
to LM to release locks

DP TM LM

lock request

lock granted

release locks

operation

end of operation

69

Centralised Two-Phase Locking (C2PL)
LM is a single point of failure

• less reliable

LM is a bottleneck
• affects transaction throughput

DP TM LM

lock request

lock granted

release locks

operation

end of operation

70

Distributed Two-Phase Locking (D2PL)
Coordinating site C runs TM

Each participant runs both an LM and a
DP

DP LM TM

71

Distributed Two-Phase Locking (D2PL)
Coordinating site C runs TM

Each participant runs both an LM and a
DP

1. TM sends operations and lock
requests to each LM

DP LM TM
operation +
lock request

72

Distributed Two-Phase Locking (D2PL)
Coordinating site C runs TM

Each participant runs both an LM and a
DP

1. TM sends operations and lock
requests to each LM

2. If lock can be granted, LM forwards
operation to local DP

DP LM TM
operation +
lock request

operation

73

Distributed Two-Phase Locking (D2PL)
Coordinating site C runs TM

Each participant runs both an LM and a
DP

1. TM sends operations and lock
requests to each LM

2. If lock can be granted, LM forwards
operation to local DP

3. DP sends “end of operation” to TM

DP LM TM
operation +
lock request

operation

end of operation

74

Distributed Two-Phase Locking (D2PL)
Coordinating site C runs TM

Each participant runs both an LM and a
DP

1. TM sends operations and lock
requests to each LM

2. If lock can be granted, LM forwards
operation to local DP

3. DP sends “end of operation” to TM

4. TM sends message to LM to release
locks

DP LM TM
operation +
lock request

release locks

operation

end of operation

75

Distributed Two-Phase Locking (D2PL)
Variant:

DPs may send “end of operation” to their
own LM

LM releases lock and informs TM

DP LM TM
operation +
lock request

end of operation

operation

end of operation
+ release locks

76

Deadlock
Deadlock exists when two or more transactions are waiting for each other to release a
lock on an item

Three conditions must be satisfied for deadlock to occur:
• Concurrency: two transactions claim exclusive control of one resource

• Hold: one transaction continues to hold exclusively controlled resources until its need is
satisfied

• Wait: transactions wait in queues for additional resources while holding resources already
allocated

77

Wait-For Graph
Representation of interactions between
transactions

Directed graph containing:
• A vertex for each transaction that is

currently executing

• An edge from T1 to T2 if T1 is waiting to
lock an item that is currently locked by T2

Deadlock exists iff the WFG contains a
cycle

T1

T3 T2

78

Distributed Deadlock

78

Two types of Wait-For Graph
• Local WFG

(one per site, only considers transactions on that site)

• Global WFG
(union of all LWFGs)

Deadlock may occur
• on a single site

(within its LWFG)

• between sites
(within the GWFG)

79

Distributed Deadlock Example
Consider the wait-for relationship T1→T2→T3→T4→T1
with T1, T2 on site 1 and T3, T4 on site 2

Site 1

T1

T2

Site 2

T3

T4

80

Distributed Deadlock Example
Consider the wait-for relationship T1→T2→T3→T4→T1
with T1, T2 on site 1 and T3, T4 on site 2

Site 1

T1

T2

Site 2

T3

T4

81

Managing Distributed Deadlock
Three main approaches:

1. Prevention
• pre-declaration

2. Avoidance
• resource ordering

• transaction prioritisation

3. Detection and Resolution

82

Prevention
Guarantees that deadlocks cannot occur in the first place

1. Transaction pre-declares all data items that it will access

2. TM checks that locking data items will not cause deadlock

3. Proceed (to lock) only if all data items are available (unlocked)

Con: difficult to know in advance which data items will be
accessed by a transaction

83

Avoidance
Two main sub-approaches:

1. Resource ordering
• Concurrency controlled such that deadlocks won’t happen

2. Transaction prioritisation
• Potential deadlocks detected and avoided

84

Resource Ordering
All resources (data items) are ordered

Transactions always access resources in this order

Example:
• Data item A comes before item B

• Both transactions need to get locks on A and B

• All transactions must get a lock on A before trying for a lock on B

• No transaction will ever be left with a lock on B and waiting for a lock on A

85

Transaction Prioritisation
Each transaction has a timestamp that corresponds to the time it was started: ts(T)

• Transactions can be prioritised using these timestamps

When a lock request is denied, use priorities to choose a transaction to abort
• WAIT-DIE and WOUND-WAIT rules

86

WAIT-DIE and WOUND-WAIT
Ti requests a lock on a data item that is already locked by Tj

The WAIT-DIE rule:
if ts(Ti) < ts(Tj)

then Ti waits
else Ti dies (aborts and restarts with same timestamp)

The WOUND-WAIT rule:
if ts(Ti) < ts(Tj)

then Tj is wounded (aborts and restarts with same timestamp)
else Ti waits

note: WOUND-WAIT pre-empts active transactions

87

Detection and Resolution
1. Study the GWFG for cycles (detection)

2. Break cycles by aborting transactions (resolution)

Selecting minimum total cost sets of transactions to abort is NP-complete

Three main approaches to deadlock detection:
• centralised

• hierarchical

• distributed

88

Centralised Deadlock Detection
One site is designated as the deadlock detector (DD) for the system

Each site sends its LWFG (or changes to its LWFG) to the DD at intervals

DD constructs the GWFG and looks for cycles

89

Hierarchical Deadlock Detection
Each site has a DD, which looks in the site’s LWFG for cycles

Each site sends its LWFG to the DD at the next level, which merges the LWFGs sent to it
and looks for cycles

These DDs send the merged WFGs to the next level, etc

site 1 site 2 site 3 site 4

deadlock
detectors

90

Distributed Deadlock Detection
Responsibility for detecting deadlocks is delegated to sites

LWFGs are modified to show relationships between local transactions and remote
transactions

Site 1

T1

T2

Site 2

T3

T4

91

Distributed Deadlock Detection
LWFG contains a cycle not involving external edges

• Local deadlock, resolve locally

LWFG contains a cycle involving external edges
• Potential deadlock – communicate to other sites

• Sites must then agree on a victim transaction to abort

Reliability

93

Distribution and ACID
Non-distributed databases aim to maintain atomicity and durability of transactions

• Atomicity: A transaction is either performed completely or not at all

• Durability: Once a transaction has been committed, changes should not be lost because of
failure

As with parallel databases, distributed databases use the two-phase commit protocol
(2PC) to preserve atomicity

• Increased cost of communication may require a variant approach

94

Centralised 2PC
Communication only between the coordinator and the participants

• No inter-participant communication

95

Centralised 2PC
Communication only between the coordinator and the participants

• No inter-participant communication

C

96

Centralised 2PC
Communication only between the coordinator and the participants

• No inter-participant communication

C P3

P1

P2

P4

P5

prepare T

97

Centralised 2PC
Communication only between the coordinator and the participants

• No inter-participant communication

C P3

P1

P2

P4

P5

prepare T

C

vote-commit T
vote-abort T

98

Centralised 2PC
Communication only between the coordinator and the participants

• No inter-participant communication

C P3

P1

P2

P4

P5

prepare T

C

vote-commit T
vote-abort T

voting phase

99

Centralised 2PC
Communication only between the coordinator and the participants

• No inter-participant communication

C P3

P1

P2

P4

P5

prepare T

C

vote-commit T
vote-abort T

P1

P2

P5

P4

P3

commit T
abort T

voting phase

10
0

Centralised 2PC
Communication only between the coordinator and the participants

• No inter-participant communication

C P3

P1

P2

P4

P5

prepare T

C

vote-commit T
vote-abort T

P1

P2

P5

P4

P3

commit T
abort T

C

ack

voting phase

10
1

Centralised 2PC
Communication only between the coordinator and the participants

• No inter-participant communication

C P3

P1

P2

P4

P5

prepare T

C

vote-commit T
vote-abort T

P1

P2

P5

P4

P3

commit T
abort T

C

ack

voting phase decision phase

10
2

Linear 2PC
• First phase from the coordinator to the participants

• Second phase from the participants to the coordinator

• Participants may unilaterally abort

10
3

Linear 2PC
• First phase from the coordinator to the participants

• Second phase from the participants to the coordinator

• Participants may unilaterally abort

C

10
4

Linear 2PC
• First phase from the coordinator to the participants

• Second phase from the participants to the coordinator

• Participants may unilaterally abort

C P1

prepare T

P3

VC/VA T

P2

VC/VA T

P4

VC/VA T

P5

VC/VA T

10
5

Linear 2PC
• First phase from the coordinator to the participants

• Second phase from the participants to the coordinator

• Participants may unilaterally abort

C P1

prepare T

P3

VC/VA T

P2

VC/VA T

P4

VC/VA T

P5

VC/VA T

voting phase

10
6

Linear 2PC
• First phase from the coordinator to the participants

• Second phase from the participants to the coordinator

• Participants may unilaterally abort

C P1

prepare T

P3

VC/VA T

P2

VC/VA T

P4

VC/VA T

P5

VC/VA T

C/A TC/A TC/A TC/A TC/A T

voting phase

10
7

Linear 2PC
• First phase from the coordinator to the participants

• Second phase from the participants to the coordinator

• Participants may unilaterally abort

C P1

prepare T

P3

VC/VA T

P2

VC/VA T

P4

VC/VA T

P5

VC/VA T

C/A TC/A TC/A TC/A TC/A T

voting phase

decision phase

10
8

Distributed 2PC
• Participants send responses to coordinator plus all other participants

• Each participant can individually determine the global decision

• No need for second phase

10
9

Distributed 2PC
• Participants send responses to coordinator plus all other participants

• Each participant can individually determine the global decision

• No need for second phase

C

11
0

Distributed 2PC
• Participants send responses to coordinator plus all other participants

• Each participant can individually determine the global decision

• No need for second phase

C P3

P1

P2

P4

P5

prepare T

11
1

Distributed 2PC
• Participants send responses to coordinator plus all other participants

• Each participant can individually determine the global decision

• No need for second phase

C P3

P1

P2

P4

P5

prepare T
C

vote-commit T
vote-abort T

P3

P1

P2

P4

P5

11
2

Comparison
• Linear 2PC involves fewer messages

• Centralised 2PC provides opportunities for parallelism

• Linear 2PC has worse response time performance

• Both Linear 2PC and Distributed 2PC require the coordinator to provide identities of
all participants in the "prepare T" message

Replication

11
4

Replication
So far, we've assumed that there is a single copy of any given data item

We may wish to replicate data for several reasons:
• System availability

Remove single points of failure

• Performance
Reduce communications overhead by moving data closer to its access points

• Scalability
Support growth in accesses while keeping response times acceptable

11
5

Replication
Need to distinguish a logical data item 𝑥 from the physical data items 𝑥"…𝑥$ that are
its replicas

(note that not all data items may be replicated)

If the system provides replication transparency, transactions will issue read and write
operations on the logical data items

11
6

Consistency
Transactions which access replicated data items are global transactions

• must be executed at multiple sites

• local transactions access only non-replicated data items

When a global transaction updates copies of a replicated data item on different sites,
the values of the copies may be different at a given point in time

A replicated database is in a mutually consistent state if all copies of each of its data
items have identical values

• Strong mutual consistency: all copies of a data item have the same value at the end of an
update transaction

• Weak mutual consistency: all copies of a data item eventually have the same value
(also known as eventual consistency)

11
7

Consistency
Mutual consistency and transactional consistency are not the same!

Transactional consistency requires serialisability

Consider the following example:

We have the following three transactions:
• T1: x=20; write(x); commit

• T2: read(x); y=x+y; write(y); commit

• T3: read(x); read(y); z=(x*y)/100; write(z); commit

Site B

𝑥2
𝑦2

Site A

𝑥3

Site C

𝑥4
𝑦4
𝑧4

11
8

Consistency
The histories for sites A,B,C are as follows:

• HA = write1(xA); commit1

• HB = write1(xB); commit1; read2(xB); write2(yB); commit2

• HC = write2(yC); commit2; read3(xC); read3(yC); write3(zC); commit3; write1(xC); commit1

Serialisation order in HB is T1;T2, whereas that in HC is T2;T3;T1

Global history is not serialisable (therefore transactional consistency not preserved)

However, xA=xB=xC and yB=yC (therefore mutual consistency is preserved)

We can introduce the notion of one-copy serialisability (1SR):

• The effects of transactions on replicated data should be the same as if they had been
performed serially on unreplicated data

11
9

Updates
Where are updates to databases first performed?

• Centralised: updates performed first on a master copy
• Single master: single site holds the master copy of all data items

• Primary copy: sites holding master copies of each data item may be different

• Distributed: updates applied first to any replica
(also referred to as multi-master or update anywhere)

12
0

Update Propagation
How are updates propagated to all replicas?

• Eager propagation: changes are propagated during the lifetime of the global
transaction

• Lazy propagation: changes may be propagated after the global transaction has
committed

12
1

Eager Update Propagation
When transaction commits, all replicas have same value: strong mutual consistency

• Updates to replicas are atomic, as part of transaction

• Doesn't matter which replicas get read subsequently – they're all the same

Read-one/write-all (ROWA) behaviour is characteristic of eager approaches

"during the lifetime" allows some flexibility:

• Synchronous propagation: apply update to all replicas when write is performed

• Deferred propagation: apply update to all replicas at the end of the transaction
before commit (include updates in "prepare T" message as part of 2PC?)

12
2

Lazy Update Propagation
Transaction commits before changes are propagated

• Lower response times than with eager update propagation

Updates are subsequently propagated in refresh transactions which contain the update
operations from the transaction

Aim for eventual consistency (weak mutual consistency)

12
3

Update Propagation
Centralised/distributed and eager/lazy are orthogonal concerns

Replication protocols exist for each combination

Replication transparency is a related concern that affects centralised approaches

12
4

Eager Centralised (Single Master) Limited Transparency
Read-only transactions are submitted to TM on local site

Update transactions must be submitted to the master site TM (limited transparency)

• read(x) operations performed on master copy xm

• write(x) operations performed on master copy xm, and then write(x) forwarded to all
other sites (either deferred or synchronously)

Update execution at other sites needs to carry out conflicting updates in the same
order as on the master—order by timestamps

12
5

Eager Centralised (Single Master) Full Transparency
For full replication transparency, need to submit all transactions to local site TM

Coordinating TM at application site

• Acts as coordinator for both read-only and update transactions

Simple approach: forward all operations to master site for execution

• Potential heavy load on master site

• Can we do better?

12
6

Eager Centralised (Single Master) - Reads

TM DP

Coordinating site Master site

DP

Other site

LM DP

Other site

lock-shared-(x)

grant

read(xi)

read(x)transaction

12
7

Eager Centralised (Single Master) - Writes

TM DP

Coordinating site Master site

DP

Other site

LM DP

Other site

lock-exclusive-(x)

grant

write(x)

write(xm)

write(xi)

write(xj)

transaction

12
8

Eager Centralised (Primary Copy) Full Transparency
Each replicated data item can have a different master (the primary copy)

• No single master to determine global serialisation order

Coordinating TM at application site

• Forward each operation to the primary site for that data item

• Primary site propagates operation to other sites

Requires that each site knows the location of the primary copy of each data item

LM on each site is responsible for the data items for which it has the primary copy

12
9

Eager Distributed
No master copies of data items

Updates can originate on any site

• Writes applied first to local replica, then propagated to other replicas

• Changes made by propagated write become permanent on commit

Concurrent conflicting writes must be executed in the same order at every site – use
existing concurrency control techniques

13
0

Lazy Centralised (Single Master) Limited Transparency
Read-only transactions are submitted to TM on local site

Update transactions must be submitted to the master site TM

• read(x) operations performed on master copy xm

• write(x) operations performed on master copy xm

• Once update transaction is committed, update is propagated to other sites as a
refresh transaction

Ordering of refresh transactions preserved by using timestamps from master site

13
1

Lazy Centralised (Single Master) Full Transparency
Two potential problems:

1. Difficult to achieve a one-copy serialisable global history

2. A transaction may not see its own updates

13
2

Problem 1: Set up
• A master site M and a second site S

• Data items x and y, replicated on both M and S

• Two transactions:
• T1: read(x); write(y); commit (submitted to S)

• T2: write(x); write(y); commit (submitted to M)

13
3

Problem 1: Execution trace
1. T1 submits read1(x) to site S, which executes it

2. T2 submits write2(x) to site M, which executes it

3. T2 submits write2(y) to site M, which executes it

4. T2 submits commit2 to site M

5. Site M commits T2

6. T1 submits write1(y) to site S, which forwards it to M

7. Site M executes write1(x), and sends confirmation to S

8. T1 submits commit1 to site S, which forwards it to M

9. Site M commits T1, and sends confirmation to S

10. Site S commits T1

11. Site M sends refresh transaction for T2 to site S, which executes and commits it

12. Site M sends refresh transaction for T1 to site S, which executes and commits it

13
4

Problem 1
This gives us the following histories on sites M and S:

HM = write2(xm); write2(ym); commit2; write1(xm); commit1

HS = read1(xS); commit1; write2R(xs); write2R(ys); commit2R; write1R(xs); commit1R

The resulting global history is non-1SR

For 1SR, refresh transactions must be executed in the same order as the original
transactions are committed on the master site

One approach: use timestamps on transactions and data items to ensure that correct
values are read.

Bernstein, P. et al (2006) Relaxed-currency serializability for middle-tier caching and replication. Proceedings of the 2006 ACM SIGMOD
international conference on management of data. pp.599-610

13
5

Problem 2: Set up
• A master site M and a second site S

• A data item x, replicated on both M and S

• One transaction:
• T1: write(x); read(x); commit (submitted to S)

13
6

Problem 2: Execution trace
1. T1 submits write1(x) to site S, which forwards it to M

2. write1(x) is executed at site M, and confirmation sent back to S

3. T1 submits read1(x) to site S, which executes it

4. T1 submits commit1 to site S, which forwards it to M

5. Site M commits T1 and sends confirmation sent back to S

6. Site S commits T1

7. Site M sends refresh transaction for T1 (containing write(x)) to site S

8. Site S executes the refresh transaction and commits it

(what is the value of x that T1 reads in step 3?)

13
7

Problem 2
Possible approach:

• Maintain a list of the updates that a transaction performs

• When a read() is executed, check list

• If data item being read has already been written during this transaction, execute read
at master

13
8

Lazy Distributed
Execution on coordinating site is easy

• Make changes, send refresh transactions

Management and reconciliation of updates at other sites is difficult

The CAP Theorem

14
0

The CAP Theorem

14
0

In any distributed system, there is a trade-off between:

• Consistency
Each server always returns the correct response to each request

• Availability
Each request eventually receives a response

• Partition Tolerance
Communication may be unreliable (messages delayed, messages lost, servers partitioned into
groups that cannot communicate with each other), but the system as a whole should continue
to function

14
1

The CAP Theorem

14
1

CAP is an example of the trade-off between safety and liveness in an unreliable system
• Safety: nothing bad ever happens

• Liveness: eventually something good happens

We can only manage two of three from C, A, P
• Typically we sacrifice either availability (liveness) or consistency (safety)

Next Lecture:
Data Warehousing

