


Logging and Recovery
COMP3211 Advanced Databases

Dr Nicholas Gibbins – nmg@ecs.soton.ac.uk



3

Durability

3

Once a database is changed and committed, 
changes should not be lost because of failure



4

input(X)

4

Xd

diskbuffertransaction

Copy the disk block containing 
database item X into a buffer frame

Xm



5

read(X)

5

Xd

diskbuffertransaction

Read a database item X into a local 
variable. If the block containing X is 
not already in a buffer frame, first 

input(X)

XmX



6

write(X)

6

Xd

diskbuffertransaction

Write the value of local variable into 
database item X in a buffer frame

XmX



7

output(X)

7

Xd

diskbuffertransaction

Copy the block containing X from 
buffer frame to disk

Xm



8

Expanded Transaction

8

read(X)

X := X – 10

write(X)

read(Y)

Y := Y+10

write(Y)

output(X)

output(Y)



99

Action X Y Xm Ym Xd Yd Log

20 50



1010

Action X Y Xm Ym Xd Yd Log

20 50

read(X) 20 20 20 50



1111

Action X Y Xm Ym Xd Yd Log

20 50

read(X) 20 20 20 50

X := X – 10 10 20 20 50



1212

Action X Y Xm Ym Xd Yd Log

20 50

read(X) 20 20 20 50

X := X – 10 10 20 20 50

write(X) 10 10 20 50



1313

Action X Y Xm Ym Xd Yd Log

20 50

read(X) 20 20 20 50

X := X – 10 10 20 20 50

write(X) 10 10 20 50

read(Y) 10 50 10 50 20 50



1414

Action X Y Xm Ym Xd Yd Log

20 50

read(X) 20 20 20 50

X := X – 10 10 20 20 50

write(X) 10 10 20 50

read(Y) 10 50 10 50 20 50

Y := Y+10 10 60 10 50 20 50



1515

Action X Y Xm Ym Xd Yd Log

20 50

read(X) 20 20 20 50

X := X – 10 10 20 20 50

write(X) 10 10 20 50

read(Y) 10 50 10 50 20 50

Y := Y+10 10 60 10 50 20 50

write(Y) 10 60 10 60 20 50



1616

Action X Y Xm Ym Xd Yd Log

20 50

read(X) 20 20 20 50

X := X – 10 10 20 20 50

write(X) 10 10 20 50

read(Y) 10 50 10 50 20 50

Y := Y+10 10 60 10 50 20 50

write(Y) 10 60 10 60 20 50

output(X) 10 60 10 60 10 50



1717

Action X Y Xm Ym Xd Yd Log

20 50

read(X) 20 20 20 50

X := X – 10 10 20 20 50

write(X) 10 10 20 50

read(Y) 10 50 10 50 20 50

Y := Y+10 10 60 10 50 20 50

write(Y) 10 60 10 60 20 50

output(X) 10 60 10 60 10 50

output(Y) 10 60 10 60 10 60



Logging



19

Logging

19

Main approach to recovering from a system crash relies on a persistent record of 
changes made during a transaction

Append-only files used by log manager to record events

Three main approaches to logging:
• Undo Logging

• Redo Logging

• Undo/Redo Logging



20

Log Records

20

<start T>
Transaction T has started execution

<commit T>
Transaction T has completed successfully and will make no further changes to 
database items

<abort T>
Transaction T could not complete successfully. No changes made by T will be copied to 
disk.



Undo Logging



22

Undo Logging

22

Repair a database following a system crash by undoing the effects of transactions that 
were incomplete at the time of the crash

Introduces a new record type to record changes:

<T, X, old>
Transaction T has changed database item X from its old value



23

Undo Logging

23

time

T4



24

Undo Logging

24

time<start T4>

T4



25

Undo Logging

25

time<start T4> <T4 ...>

T4



26

Undo Logging

26

time<start T4> <T4 ...> <T4 ...>

T4



27

Undo Logging

27

time<start T4> <T4 ...> <commit T4><T4 ...>

T4



28

Undo Logging Rules

28

U1: If transaction T modifies database item X, then a log record of the form <T, X, old> 
must be written to disk before the new value of X is output to disk

U2: If a transaction T commits, then its <commit T> log record must be written to disk 
only after all database items changed by T have been output to disk (but then as soon 
as possible)



2929

Action X Y Xm Ym Xd Yd Log

20 50 <start T>

read(X) 20 20 20 50

X := X – 10 10 20 20 50

write(X) 10 10 20 50 <T, X, 20>

read(Y) 10 50 10 50 20 50

Y := Y+10 10 60 10 50 20 50

write(Y) 10 60 10 60 20 50 <T, Y, 50>

flush log

output(X) 10 60 10 60 10 50

output(Y) 10 60 10 60 10 60

<commit T>

flush log



30

Recovery with Undo Logging

30

foreach log entry <T, X, old>, scanning backwards {
if <commit T> has been seen {

do nothing
} else {

change the value of X in the database back to old
}

}
foreach incomplete transaction T (that was not aborted) {

write <abort T> to log
}
flush log



31

Recovery with Undo Logging

31

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

backwards forwards time



32

Recovery with Undo Logging

32

T1

T2

T3

T4

T5

T6

T7

T8

time<abort T8>



33

Recovery with Undo Logging

33

T1

T2

T3

T4

T5

T6

T7

T8

time<abort T8>



34

Recovery with Undo Logging

34

T1

T2

T3

T4

T5

T6

T7

T8

time<abort T8>



35

Undo Logging with Checkpointing

35

Disadvantage of this approach: we must scan the entire log

Introduce a periodic checkpoint in the log
• Before checkpoint, all transactions have committed or aborted

• Only need search backwards through the log to the most recent checkpoint

New log record type:

<ckpt>
The database has been checkpointed



36

Checkpointing

36

1. Stop accepting new transactions

2. Wait until all active transactions commit/abort and write <commit T>/<abort T> to 
the log

3. flush log

4. write <ckpt> to log

5. flush log

6. Resume accepting transactions



37

Recovery with Checkpointed Undo Logging

37

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

time



38

Recovery with Checkpointed Undo Logging

38

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

timestop accepting new transactions



39

Recovery with Checkpointed Undo Logging

39

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

timestop accepting new transactions

wait for active transactions to commit/abort and write to log



40

Recovery with Checkpointed Undo Logging

40

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

time<ckpt>stop accepting new transactions

wait for active transactions to commit/abort and write to log



41

Recovery with Checkpointed Undo Logging

41

T1

T2

T3

T4

T5

T6

T7

T8

time<ckpt>



42

Recovery with Checkpointed Undo Logging

42

T1

T2

T3

T4

T5

T6

T7

T8

time<ckpt>



43

Recovery with Checkpointed Undo Logging

43

T1

T2

T3

T4

T5

T6

T7

T8

time<ckpt>



44

Nonquiescent Checkpointing

44

Need to stop transaction processing while checkpointing
• System may appear to stall

• Allow new transactions to enter the system during the checkpoint.

New log record types:

<start ckpt (T1...Tn)>
Checkpoint starts. T1...Tn are active transactions that have not yet committed

<end ckpt>
Checkpoint ends



45

Nonquiescent Checkpointing

45

1. Write <start ckpt (T1...Tn)> to log and flush log

2. Wait until T1..Tn have all committed or aborted

3. Write <end ckpt> to log and flush log

Note that new transactions may be started during step 2



46

Nonquiescent Checkpointing

46

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

time



47

<start ckpt (T3, T4, T5, T6)>

Nonquiescent Checkpointing

47

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

time



48

<start ckpt (T3, T4, T5, T6)>

wait for active transactions to commit/abort

Nonquiescent Checkpointing

48

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

time



49

<end ckpt><start ckpt (T3, T4, T5, T6)>

wait for active transactions to commit/abort

Nonquiescent Checkpointing

49

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

time



50

Recovery with Checkpointed Undo Logging
Two cases for recovery depending on latest checkpoint log record:

• <end ckpt> 

• <start ckpt (T1...Tn)>



51

Recovery with Checkpointed Undo Logging

51

<end ckpt> appears latest
• All incomplete transactions began after the previous <start ckpt (...)>

• Disregard the log before the previous <start ckpt (...)>



52

<end ckpt><start ckpt (T3, T4, T5, T6)>

Recovery with Checkpointed Undo Logging

52

T1

T2

T3

T4

T5

T6

T7

T8

time

T9



53

<end ckpt><start ckpt (T3, T4, T5, T6)>

Recovery with Checkpointed Undo Logging

53

T1

T2

T3

T4

T5

T6

T7

T8

time

T9



54

<end ckpt><start ckpt (T3, T4, T5, T6)>

Recovery with Checkpointed Undo Logging

54

T1

T2

T3

T4

T5

T6

T7

T8

time

T9



55

Recovery with Checkpointed Undo Logging

55

<start ckpt (T1...Tn)> appears latest
• System crash occurred during checkpoint

• Incomplete transactions are those encountered after the 
<start ckpt (...)> and those of T1...Tn that were not committed before the crash

• Disregard the log before the start of the earliest incomplete transaction



56

<start ckpt (T3, T4, T5, T6)>

Recovery with Checkpointed Undo Logging

56

T1

T2

T3

T4

T5

T6

T7

T8

time

T9



57

<start ckpt (T3, T4, T5, T6)>

Recovery with Checkpointed Undo Logging

57

T1

T2

T3

T4

T5

T6

T7

T8

time

T9



58

<start ckpt (T3, T4, T5, T6)>

Recovery with Checkpointed Undo Logging

58

T1

T2

T3

T4

T5

T6

T7

T8

time

T9



59

<start ckpt (T3, T4, T5, T6)>

Recovery with Checkpointed Undo Logging

59

T1

T2

T3

T4

T5

T6

T7

T8

time

T9



Redo Logging

60



61

Issues with Undo Logging

61

U2: If a transaction T commits, then its <commit T> log record must be written to disk 
only after all database items changed by T have been written to disk (but then as soon 
as possible)

• Potentially causes more disk i/o operations

• Can we let changes reside in buffer memory for longer?



62

Redo Logging

62

Ignore incomplete transactions, repeat changes made by committed transactions

Write <commit T> log record to disk before changed values are written to disk
• If no <commit T> record has been written, no changes by T have been written to disk

Introduces a different record type to record changes:

<T, X, new>
Transaction T has changed database item X to a new value



63

Redo Logging Rule

63

R1: Before modifying a database item X on disk, all log records related to the 
modification (<T, X, new>, <commit T>) must be written to disk



6464

Action X Y Xm Ym Xd Yd Log

20 50 <start T>

read(X) 20 20 20 50

X := X – 10 10 20 20 50

write(X) 10 10 20 50 <T, X, 10>

read(Y) 10 50 10 50 20 50

Y := Y+10 10 60 10 50 20 50

write(Y) 10 60 10 60 20 50 <T, Y, 60>

<commit T>

flush log

output(X) 10 60 10 60 10 50

output(Y) 10 60 10 60 10 60



65

Recovery with Redo Logging

65

identify the committed transactions

foreach log entry <T, X, new>, scanning forwards {
if T is not committed {

do nothing
} else {

write value new for X to the database
}

}
foreach incomplete transaction T {

write <abort T> to log
}
flush log



66

Recovery with Redo Logging

66

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

backwards forwards time



67

Recovery with Redo Logging

67

T1

T2

T3

T4

T5

T6

T7

T8

T9

time



68

Recovery with Redo Logging

68

T1

T2

T3

T4

T5

T6

T7

T8

T9

time



69

Recovery with Redo Logging

69

T1

T2

T3

T4

T5

T6

T7

T8

T9

time



70

Checkpointing with Redo Logging

70

1. Write log record <start ckpt (T1..Tn)>, where T1...Tn are uncommitted, and flush 
log

2. Write to disk all database items that have been written to buffers but not yet to 
disk, by transactions that have already committed

3. Write log record <end ckpt> and flush log



71

Recovery with Redo Logging

71

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

time



72

Recovery with Redo Logging

72

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

time<start ckpt (T3, T4, T5, T6)>



73

Recovery with Redo Logging

73

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

time<start ckpt (T3, T4, T5, T6)>

write T1, T2 to disk



74

Recovery with Redo Logging

74

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

time<end ckpt><start ckpt (T3, T4, T5, T6)>

write T1, T2 to disk



75

Recovery with Checkpointed Redo Logging

75

As with checkpointed undo logging, two cases:

<end ckpt>
• Every value written by transactions that committed before the corresponding <start ckpt ()> 

has been written to disk – ignore

• Any transaction named in the checkpoint start, or which has started since, may have 
changes that have not been written to disk (even if the transaction has committed)



76

Recovery with Checkpointed Redo Logging

76

T1

T2

T3

T4

T5

T6

T7

T8

T9

time<end ckpt><start ckpt (T3, T4, T5, T6)>



77

Recovery with Checkpointed Redo Logging

77

T1

T2

T3

T4

T5

T6

T7

T8

T9

time<end ckpt><start ckpt (T3, T4, T5, T6)>



78

Recovery with Checkpointed Redo Logging

78

T1

T2

T3

T4

T5

T6

T7

T8

T9

time<end ckpt><start ckpt (T3, T4, T5, T6)>



79

Recovery with Checkpointed Redo Logging

79

As with checkpointed undo logging, two cases:

<start ckpt (T1...Tn)>
• Can’t tell whether committed transactions prior to this checkpoint had their changes written 

to disk

• Search back to the previous <end ckpt>, find its corresponding <start ckpt ()> and treat as 
before



80

Recovery with Checkpointed Redo Logging

80

T1

T2

T3

T4

T5

T6

T7

T8

T9

time
<end ckpt>

<start ckpt (T3, T4, T5, T6)><start ckpt (T1, T2)>



81

Recovery with Checkpointed Redo Logging

81

T1

T2

T3

T4

T5

T6

T7

T8

T9

time
<end ckpt>

<start ckpt (T3, T4, T5, T6)><start ckpt (T1, T2)>



82

Recovery with Checkpointed Redo Logging

82

T1

T2

T3

T4

T5

T6

T7

T8

T9

time
<end ckpt>

<start ckpt (T3, T4, T5, T6)><start ckpt (T1, T2)>



Undo/Redo Logging



84

Undo/Redo Logging

84

Aims to address issues with both undo and redo logging
• Undo logging may increase number of disk i/o operations

• Redo logging requires that all modified blocks be kept in buffers until the transaction 
commits and the logs flushed

Introduces a different record type to record changes:

<T, X, old, new>
Transaction T has changed database item X from an old to a new value



85

Undo/Redo Logging Rules

85

UR1: Before transaction T modifies any database item X on disk, the update record <T, 
X, old, new> must be written to disk

UR2: A <commit T> record must be flushed to disk as soon as it it written to the log

Note: the <commit T> log record may come before or after any of the changes on disk



8686

Action X Y Xm Ym Xd Yd Log

20 50 <start T>

read(X) 20 20 20 50

X := X – 10 10 20 20 50

write(X) 10 10 20 50 <T, X, 20, 10>

read(Y) 10 50 10 50 20 50

Y := Y+10 10 60 10 50 20 50

write(Y) 10 60 10 60 20 50 <T, Y, 50, 60>

flush log

output(X) 10 60 10 60 10 50

<commit T>

flush log

output(Y) 10 60 10 60 10 60



87

Recovery with Undo/Redo Logging

87

1. Redo all committed transactions from oldest to newest

2. Undo all incomplete transactions from newest to oldest



88

Checkpointing with Undo/Redo Logging

88

1. Write <start ckpt (T1...Tn)> to log and flush log

2. Write to disk all dirty buffers (i.e. those with one or more changed database items, 
not just those from committed transactions)

3. Write <end ckpt> to log and flush log



Next Lecture: 
Parallel Databases


