

Transactions and Concurrency
COMP3211 Advanced Databases

Dr Nicholas Gibbins – nmg@ecs.soton.ac.uk

3

Overview
• Transaction processing

• Transaction problems

• Transaction lifecycle

• ACID

• Schedules and serialisability

• Locking (including 2PL)

• Timestamps

4

Concurrency
• In a multi-user DBMS, many users may use the system concurrently

• Stored data items may be accessed concurrently by user programs

5

Concurrency
• In a multi-user DBMS, many users may use the system concurrently

• Stored data items may be accessed concurrently by user programs

Transaction: a logical unit of work that changes the contents of a database
• Group of database operations that are to be executed together

6

When updates go wrong, part one

6

time

7

When updates go wrong, part one

7

time
transaction 1

8

When updates go wrong, part one

8

time

User 1 finds
seat 22a is empty

transaction 1

9

When updates go wrong, part one

9

time

User 1 finds
seat 22a is empty

User 1 books
seat 22a

transaction 1

10

When updates go wrong, part one

10

time

User 1 finds
seat 22a is empty

User 2 finds
seat 22a is empty

User 1 books
seat 22a

User 2 books
seat 22a

transaction 1 transaction 2

11

Serial versus Serialisable

11

In an ideal world, we would run transactions serially
• Transactions runs one at a time, with no overlap

In practice, some parallelism is required
• Too many transactions for serial execution!

Transactions should be serialisable
• Should behave as if they were serial, but may be executed concurrently

12

When updates go wrong, part two

12

time

13

When updates go wrong, part two

13

time

Add £100 to
account 123

Subtract £100
from account 456

14

When updates go wrong, part two

14

time

Add £100 to
account 123

Subtract £100
from account 456

CRASH!

15

Atomicity

15

System failure partway through a transaction may leave the database in an inconsistent
state

Transactions are atomic: operations within a transaction should either all be executed
successfully or not be executed at all

Transaction Problems

17

Basic database access operations
read(X)

Reads a database item Xd into a program variable XT in transaction T

write(X)

Writes the value of program variable XT in transaction T into the database item Xd

18

Example Transactions

read(X)
X := X – 10
write(X)
read(Y)
Y := Y+10
write(Y)

Initial values: X=20, Y=50

Final values: X=15, Y=60

read(X)
X := X + 5
write(X)

T1 T2

19

Concurrency
• Understanding transactions is important for concurrency

• Operations within a transaction may be interleaved with those from another
transaction

• Depending on how operations are interleaved, database items may have incorrect
values

20

The Lost Update Problem
Two transactions have operations interleaved so that some DB items are incorrect

2121

T1 T2 XT1 YT1 XT2 YT2 Xd Yd

20 50

2222

T1 T2 XT1 YT1 XT2 YT2 Xd Yd

20 50

read(X) 20 20 50

2323

T1 T2 XT1 YT1 XT2 YT2 Xd Yd

20 50

read(X) 20 20 50

X := X – 10 10 20 50

2424

T1 T2 XT1 YT1 XT2 YT2 Xd Yd

20 50

read(X) 20 20 50

X := X – 10 10 20 50

read(X) 10 20 20 50

2525

T1 T2 XT1 YT1 XT2 YT2 Xd Yd

20 50

read(X) 20 20 50

X := X – 10 10 20 50

read(X) 10 20 20 50

X := X + 5 10 25 20 50

2626

T1 T2 XT1 YT1 XT2 YT2 Xd Yd

20 50

read(X) 20 20 50

X := X – 10 10 20 50

read(X) 10 20 20 50

X := X + 5 10 25 20 50

write(X) 10 25 10 50

2727

T1 T2 XT1 YT1 XT2 YT2 Xd Yd

20 50

read(X) 20 20 50

X := X – 10 10 20 50

read(X) 10 20 20 50

X := X + 5 10 25 20 50

write(X) 10 25 10 50

read(Y) 10 50 25 10 50

2828

T1 T2 XT1 YT1 XT2 YT2 Xd Yd

20 50

read(X) 20 20 50

X := X – 10 10 20 50

read(X) 10 20 20 50

X := X + 5 10 25 20 50

write(X) 10 25 10 50

read(Y) 10 50 25 10 50

write(X) 10 50 25 25 50

2929

T1 T2 XT1 YT1 XT2 YT2 Xd Yd

20 50

read(X) 20 20 50

X := X – 10 10 20 50

read(X) 10 20 20 50

X := X + 5 10 25 20 50

write(X) 10 25 10 50

read(Y) 10 50 25 10 50

write(X) 10 50 25 25 50

Y := Y+10 10 60 25 25 50

3030

T1 T2 XT1 YT1 XT2 YT2 Xd Yd

20 50

read(X) 20 20 50

X := X – 10 10 20 50

read(X) 10 20 20 50

X := X + 5 10 25 20 50

write(X) 10 25 10 50

read(Y) 10 50 25 10 50

write(X) 10 50 25 25 50

Y := Y+10 10 60 25 25 50

write(Y) 10 60 25 25 60

31

The Temporary Update (Dirty Read) Problem
One transaction updates a DB item and then fails. Item is accessed before reverting to
original value.

3232

T1 T2 XT1 YT1 XT2 YT2 Xd Yd

20 50

read(X) 20 20 50

X := X – 10 10 20 50

write(X) 10 10 50

read(X) 10 10 10 50

X := X + 5 10 15 10 50

write(X) 10 15 15 50

read(Y) 10 50 15 15 50

CRASH!

rollback 20 50

33

The Incorrect Summary Problem
One transaction calculates an aggregate summary function on multiple records while
other transactions update records

Aggregate function may read some values before they are updated, and some after

3434

T1 T2 XT1 YT1 S XT2 YT2 Xd Yd

20 50

S := 0 0 20 50

read(X) 0 20 20 50

X := X – 10 0 10 20 50

write(X) 0 10 10 50

read(X) 10 0 10 10 50

S := S + X 10 10 10 10 50

read(Y) 10 50 10 10 10 50

S := S + Y 10 50 60 10 10 50

read(Y) 10 50 60 10 50 10 50

Y := Y + 10 10 50 60 10 60 10 50

write(Y) 10 50 60 10 60 10 60

35

The Unrepeatable Read Problem
One transaction reads an item twice, while another changes the item between the two
reads

T1: T2:

read(X)

read(X)

X := X – 10

write(X)

read(X)

36

Transaction Processing
When a transaction is submitted for execution, the system must ensure that:

• All operations in the transaction are completed successfully, with effect recorded
permanently in the database, or

• There is no effect on the database or other transactions

Transactions may be read-only or update

37

Transaction Life Cycle
Need to track start and end of transactions, and commit and abort of transactions

• BEGIN_TRANSACTION

• READ, WRITE

• END_TRANSACTION

• COMMIT_TRANSACTION

• ROLLBACK (or ABORT)

38

Transaction Life Cycle

Active

Failed

Partially
Committed Committed

Terminated

BEGIN
TRANSACTION

READ, WRITE

END
TRANSACTION

COMMIT

ABORT
ABORT

ACID

40

ACID Properties
Atomicity

A transaction is either performed completely or not at all

Consistency

Correct transaction execution must take the database from one consistent state to another

Isolation

A transaction should not make updates externally visible (to other transactions) until
committed

Durability

Once database is changed and committed, changes should not be lost because of failure

41

Schedules
A schedule S of n transactions is an ordering of the operations of the transactions,
subject to the constraint that for each transaction T that participates in S, the
operations in T must appear in the same order in S that they do in T

Two operations in a schedule are conflicting if:
• They belong to different transactions and

• They access the same data item and

• At least one of the operations is a write()

42

Serial and Serialisable
A schedule is serial if, for each transaction T in the schedule, all operations in T are
executed consecutively (no interleaving), otherwise it is non-serial

A schedule S of n transactions is serialisable if it is equivalent to some serial schedule
of the same n transactions

43

Schedule Equivalence
Two schedules are result equivalent if they produce the same final state on the
database

Two schedules are conflict equivalent if the order of any two conflicting operations is
the same in both schedules

44

Serial Schedule T1;T2

44

T1 T2 XT1 YT1 XT2 YT2 Xd Yd
20 50

read(X) 20 20 50

X := X – 10 10 20 50

write(X) 10 10 50

read(Y) 10 50 10 50

Y := Y + 10 10 60 10 50

write(Y) 10 60 10 60

read(X) 10 60 10 10 60

X := X + 5 10 60 15 10 60

write(X) 10 60 15 15 60

45

Serial Schedule T2;T1

45

T1 T2 XT1 YT1 XT2 YT2 Xd Yd
20 50

read(X) 20 20 50

X := X + 5 25 20 50

write(X) 25 25 50

read(X) 25 25 25 50

X := X – 10 15 25 25 50

write(X) 15 25 15 50

read(Y) 15 50 25 15 50

Y := Y + 10 15 60 25 15 50

write(Y) 15 60 25 15 60

46

Non-Serial and Non-Serialisable Schedule

46

T1 T2 XT1 YT1 XT2 YT2 Xd Yd
20 50

read(X) 20 20 50

X := X – 10 10 20 50

read(X) 10 20 20 50

X := X + 5 10 25 20 50

write(X) 10 25 10 50

read(Y) 10 50 25 10 50

write(X) 10 50 25 25 50

Y := Y+10 10 60 25 25 50

write(Y) 10 60 25 25 60

47

Non-Serial but Serialisable Schedule

47

T1 T2 XT1 YT1 XT2 YT2 Xd Yd
20 50

read(X) 20 20 50

X := X – 10 10 20 50

write(X) 10 10 50

read(X) 10 10 10 50

X := X + 5 10 15 10 50

write(X) 10 15 15 50

read(Y) 10 50 15 15 50

Y := Y + 10 10 60 15 15 50

write(Y) 10 60 15 15 60

Locking

49

Locking

49

Locks are used to synchronise access by concurrent transactions to a database

Typically, two lock modes: shared and exclusive
• Shared: for reading
• Exclusive: for writing

Binary locks (equivalent to exclusive mode only) are also possible, but generally too
restrictive

50

Lock Operations

50

lock-shared(X)

Attempt to acquire a shared lock on X

lock-exclusive(X)

Attempt to acquire an exclusive lock on X

unlock(X)

Relinquish all locks on X

51

Lock Outcome
The result of an attempt to obtain a lock is either:

• Grant lock (able to access the item)

• Wait for lock to be granted (not yet able to access the item)

• (Abort)

Lock Requested

Shared Exclusive

Lock held in mode Shared Grant Wait

Exclusive Wait Wait

51

52

Locking Rules
1. Must issue lock-shared(X) or lock-exclusive(X) before a read(X) operation

2. Must issue lock-exclusive(X) before a write(X) operation

3. Must issue unlock(X) after all read(X) and write(X) operations are completed

4. Cannot issue lock-shared(X) if already holding a lock on X

5. Cannot issue lock-exclusive(X) if already holding a lock on X

6. Cannot issue unlock(X) unless holding a lock on X

53

Lock Conversion
Rules 4 and 5 may be relaxed in order to allow lock conversion

• A lock-shared(X) may be upgraded to a lock-exclusive(X)

• A lock-exclusive(X) may be downgraded to a lock-shared(X)

54

Locking Example

lock-shared(Y)
read(Y)
unlock(Y)
lock-exclusive(X)
read(X)
X := X + Y
write(X)
unlock(X)

lock-shared(X)
read(X)
unlock(X)
lock-exclusive(Y)
read(Y)
Y := Y + X
write(Y)
unlock(Y)

T1: T2:

55

Locking Example
Two possible serial schedules:

• T1;T2

• T2;T1

Take X=20 and Y=50 as initial values

56

T1 T2 XT1 YT1 XT2 YT2 Xd Yd
20 50

lock-shared(Y) 20 50

read(Y) 50 20 50

unlock(Y) 50 20 50

lock-exclusive(X) 50 20 50

read(X) 20 50 20 50

X := X + Y 70 50 20 50

write(X) 70 50 70 50

unlock(X) 70 50 70 50

lock-shared(X) 70 50 70 50

read(X) 70 50 70 70 50

unlock(X) 70 50 70 70 50

lock-exclusive(Y) 70 50 70 70 50

read(Y) 70 50 70 50 70 50

Y := Y + X 70 50 70 120 70 50

write(Y) 70 50 70 120 70 120

unlock(Y) 70 50 20 120 70 120

57

T1 T2 XT1 YT1 XT2 YT2 Xd Yd
20 50

lock-shared(X) 20 50

read(X) 20 20 50

unlock(X) 20 20 50

lock-exclusive(Y) 20 20 50

read(Y) 20 50 20 50

Y := Y + X 20 70 20 50

write(Y) 20 70 20 70

unlock(Y) 20 70 20 70

lock-shared(Y) 20 70 20 70

read(Y) 70 20 70 20 70

unlock(Y) 70 20 70 20 70

lock-exclusive(X) 70 20 70 20 70

read(X) 20 70 20 70 20 70

X := X + Y 90 70 20 70 20 70

write(X) 90 70 20 70 90 70

unlock(X) 90 70 20 70 90 70

58

Serial Schedules
After T1;T2, we have: X=70, Y=120

After T2;T1, we have: X=90, Y=70

What about a non-serial schedule?

59

T1 T2 XT1 YT1 XT2 YT2 Xd Yd
20 50

lock-shared(Y) 20 50

read(Y) 50 20 50

unlock(Y) 50 20 50

lock-shared(X) 50 20 50

read(X) 50 20 20 50

unlock(X) 50 20 20 50

lock-exclusive(Y) 50 20 20 50

read(Y) 50 20 50 20 50

Y := Y + X 50 20 70 20 50

write(Y) 50 20 70 20 70

unlock(Y) 50 20 70 20 70

lock-exclusive(X) 50 20 70 20 70

read(X) 20 50 20 70 20 70

X := X + Y 70 50 20 70 20 70

write(X) 70 50 20 70 70 70

unlock(X) 70 50 20 70 70 70

60

Locking Example
After schedule, we have: X=70, Y=70

• The schedule is not serialisable
(not result equivalent to either of the serial schedules)

• Locking, by itself, isn’t enough

Two-Phase Locking (2PL)

62

Locking and Serialisability
Using locks doesn’t guarantee serialisability by itself

Extra rules for handling locks:
• All locking operations precede the first unlock operation in a transaction

• Locks are only released after a transaction commits or aborts

63

Two-Phase Locking
Two phases:

• Growing phase: obtain locks, access data items

• Shrinking phase: release locks

Guarantees serialisable transactions

63

#locks

timeBEGIN END
LOCK
POINT

growing
phase

shrinking
phase

64

Two-Phase Locking Example

lock-shared(Y)

read(Y)

lock-exclusive(X)

unlock(Y)

read(X)

X := X + Y

write(X)

unlock(X)

lock-shared(X)

read(X)

lock-exclusive(Y)

unlock(X)

read(Y)

Y := X + Y

write(Y)

unlock(Y)

T1: T2:

Deadlock

65

66

When 2PL goes wrong
Consider the following schedule of T1 and T2

T1: T2:

lock-shared(Y)

read(Y)
lock-shared(X)

read(X)

lock-exclusive(X)

unlock(Y)
lock-exclusive(Y)

unlock(X)

... ...

67

When 2PL goes wrong
Consider the following schedule of T1 and T2

T1: T2:

lock-shared(Y)

read(Y)
lock-shared(X)

read(X)

lock-exclusive(X)

unlock(Y)
lock-exclusive(Y)

unlock(X)

... ...

T1 can’t get an
exclusive lock on

X; T2 already has a
shared lock on X

68

When 2PL goes wrong
Consider the following schedule of T1 and T2

T1: T2:

lock-shared(Y)

read(Y)
lock-shared(X)

read(X)

lock-exclusive(X)

unlock(Y)
lock-exclusive(Y)

unlock(X)

... ...

T1 can’t get an
exclusive lock on

X; T2 already has a
shared lock on X

T2 can’t get an
exclusive lock on

Y; T1 already has a
shared lock on Y

69

Deadlock
Deadlock exists when two or more transactions are waiting for each other to release a
lock on an item

Several conditions must be satisfied for deadlock to occur
• Concurrency: two processes claim exclusive control of one resource

• Hold: one process continues to hold exclusively controlled resources until its need is
satisfied

• Wait: processes wait in queues for additional resources while holding resource already
allocated

• Mutual dependency

70

Deadlock
• Final condition for deadlock is that some mutual dependency must exist

• Breaking deadlock requires that one transaction is aborted

Processes Resource List Wait List

A 1, 10 8

B 3, 4, 15 10

C 2, 0

D 6, 8 15

71

Dealing with Deadlock
Deadlock prevention

• Every transaction locks all items it needs in advance; if an item cannot be obtained, no
items are locked

• Transactions updating the same resources are not allowed to execute concurrently

Deadlock detection - detect and reverse one transaction
• Wait-for graph

• Timeouts

72

Wait-For Graph
Representation of interactions between
transactions

Directed graph containing:
• A vertex for each transaction that is

currently executing

• An edge from T1 to T2 if T1 is waiting to
lock an item that is currently locked by T2

Deadlock exists iff the WFG contains a
cycle

T1

T3 T2

73

Timeouts
If a transaction waits for a resource for longer than a given period (the timeout), the
system assumes that the transaction is deadlocked and aborts it

Granularity and Concurrency

75

Granularity of Data Items
What should be locked?

• Record

• Field value of record

• Disc block

• File

• Database

Coarser granularity gives lower degree of concurrency

Finer granularity gives higher overhead

Timestamps

77

Timestamps
• An alternative to locks – deadlock cannot occur

• Timestamps are unique identifiers for transactions – the transaction start time: TS(T)

• For each resource X, there is:
• A read timestamp, read-TS(X)

• A write timestamp, write-TS(X)

• read-TS(X) and write-TS(X) are set to the timestamp of the most recent corresponding
transaction that accessed resource X

78

Timestamp Ordering
Transactions are ordered based on their timestamps

• Schedule is serialisable

• Equivalent serial schedule has the transactions in order of their timestamps

For each resource accessed by conflicting operations, the order in which the resource
is accessed must not violate the serialisability order

79

Basic Timestamp Ordering
TS(T) is compared with read-TS(X) and write-TS(X)

• Has this item been read or written before transaction T has had an opportunity to
read/write?

• Ensure that timestamp ordering is not violated

If timestamp ordering is violated, transaction is aborted and resubmitted with a new
timestamp

80

Basic Timestamp Ordering: write(X)
if TS(T) ≥ read-TS(X) and TS(T) ≥ write-TS(X)

then

execute write(X)

set write-TS(X) to TS(T)

else

abort and rollback T

81

Basic Timestamp Ordering

81

time

X

82

Basic Timestamp Ordering

82

timewrite-TS(X)

X

83

Basic Timestamp Ordering

83

timewrite-TS(X) TS(T1)

T1

X

84

Basic Timestamp Ordering

84

timewrite-TS(X) TS(T1)

T1

TS(T2)

T2

X

85

Basic Timestamp Ordering

85

timewrite-TS(X) TS(T1)

T1

TS(T2)

T2

X

write(X)

86

Basic Timestamp Ordering

86

timewrite-TS(X)

write-TS(X) < TS(T1)
write-TS(X) := TS(T1)

TS(T1)

T1

TS(T2)

T2

X

write(X)

87

Basic Timestamp Ordering

87

time

write-TS(X) < TS(T1)
write-TS(X) := TS(T1)

TS(T1)

T1

TS(T2)

T2

X

write(X)

write-TS(X)

88

Basic Timestamp Ordering

88

time

write-TS(X) < TS(T1)
write-TS(X) := TS(T1)

TS(T1)

T1

TS(T2)

T2

X

write(X)

write(X)

write-TS(X)

89

Basic Timestamp Ordering

89

time

write-TS(X) < TS(T1)
write-TS(X) := TS(T1)

TS(T1)

T1

TS(T2)

T2

X
write-TS(X) < TS(T2)
write-TS(X) := TS(T2)

write(X)

write(X)

write-TS(X)

90

Basic Timestamp Ordering

90

time

write-TS(X) < TS(T1)
write-TS(X) := TS(T1)

TS(T1)

T1

TS(T2)

T2

X
write-TS(X) < TS(T2)
write-TS(X) := TS(T2)

write(X)

write(X)

write-TS(X)

91

Basic Timestamp Ordering

91

timewrite-TS(X) TS(T1)

T1

TS(T2)

T2

X

92

Basic Timestamp Ordering

92

timewrite-TS(X) TS(T1)

T1

TS(T2)

T2

X

write(X)

93

Basic Timestamp Ordering

93

timewrite-TS(X)

write-TS(X) < TS(T2)
write-TS(X) := TS(T2)

TS(T1)

T1

TS(T2)

T2

X

write(X)

94

Basic Timestamp Ordering

94

time

write-TS(X) < TS(T2)
write-TS(X) := TS(T2)

TS(T1)

T1

TS(T2)

T2

X

write(X)

write-TS(X)

95

Basic Timestamp Ordering

95

time

write-TS(X) < TS(T2)
write-TS(X) := TS(T2)

TS(T1)

T1

TS(T2)

T2

X

write(X)

write(X)

write-TS(X)

96

Basic Timestamp Ordering

96

time

write-TS(X) < TS(T2)
write-TS(X) := TS(T2)

TS(T1)

T1

TS(T2)

T2

X
write-TS(X) > TS(T1)

write(X)

write(X)

write-TS(X)

97

Basic Timestamp Ordering

97

time

write-TS(X) < TS(T2)
write-TS(X) := TS(T2)

TS(T1)

T1

TS(T2)

T2

X
write-TS(X) > TS(T1)

abort T1

write(X)

write(X)

write-TS(X)

98

Basic Timestamp Ordering: read(X)
if TS(T) ≥ write-TS(X)

then

execute read(X)

set read-TS(X) to max(TS(T), read-TS(X))

else

abort and rollback T

99

Dirty Read

99

timeTS(T1)

T1

TS(T2)

T2

X

abort and rollback T1
write(X)

read(X)

10
0

Dirty Read
• In the previous example, T2 has an inconsistent local value for X once T2 has been

rolled back

• We can address the dirty read by adding a commit bit commit(X) that indicates
whether the most recent transaction to write to X has been committed

• This will change the rules for reading and writing as follows

10
1

Basic Timestamp Ordering: read(X)
if TS(T) ≥ write-TS(X)

then

if commit(X) is true

then

execute read(X)

set read-TS(X) to max(TS(T), read-TS(X))

else

delay execution until commit(X) is true

else

abort and rollback T

10
2

Basic Timestamp Ordering: write(X)
if TS(T) ≥ read-TS(X) and TS(T) ≥ write-TS(X)

then

execute write(X)

set commit(X) to false

set write-TS(X) to TS(T)

else

abort and rollback T

10
3

Thomas’s Write Rule
• Modification of Basic TO that rejects fewer write operations

• Weakens the checks for write (X) so that obsolete write operations are ignored

• Does not enforce serialisability

10
4

Thomas’s Write Rule
if TS(T) ≥ read-TS(X) and TS(T) ≥ write-TS(X)

then

execute write(X)

set commit(X) to false

set write-TS(X) to TS(T)

else if TS(T) ≥ read-TS(X) and TS(T) < write-TS(X)

if commit(X) is true

ignore write (X)
else

delay execution until commit(X) is true

else

abort and rollback T

Advanced Transactions

10
6

Flat Transactions
Transactions considered so far are flat transactions

• Basic building block

• Only one level of control by the application

• All-or-nothing (commit or abort)

• The simplest type of transaction!

10
7

Long Duration Transactions

10
7

Transactions considered so far are short duration
• Banking or ticket reservations as example applications

• Transactions complete in minutes, if not seconds

Long-lived transactions present particular challenges
• More susceptible to failure (and rollback not acceptable)

• May lock and access many data items (increases chance of deadlock)

10
8

Savepoints
Savepoint: an identifiable point in a flat transaction representing a partially consistent
state which can be used as an internal restart point for the transaction

Used for deadlock handling
• partially rollback transaction in order to release required locks

Savepoints may be persistent
• Following a system crash, restart active transactions from their most recent savepoints

10
9

Savepoints

10
9

START T1

operation 1
operation 2
operation 3

SAVEPOINT 1

operation 4
operation 5
operation 6

SAVEPOINT 2

ROLLBACK to 1

operation 7
operation 8
operation 9

11
0

Savepoints

11
0

START T1

operation 1
operation 2
operation 3

SAVEPOINT 1

operation 4
operation 5
operation 6

SAVEPOINT 2

ROLLBACK to 1

operation 7
operation 8
operation 9

work covered by
savepoint 1

11
1

Savepoints

11
1

START T1

operation 1
operation 2
operation 3

SAVEPOINT 1

operation 4
operation 5
operation 6

SAVEPOINT 2

ROLLBACK to 1

operation 7
operation 8
operation 9

operation 4
operation 5
operation 6

SAVEPOINT 3

operation 7
operation 8
operation 9

SAVEPOINT 4

work covered by
savepoint 1

11
2

Chained Transactions

Transaction broken into
subtransactions which are
executed serially

On chaining to the next
subtransaction:

• commit results

• keep (some) locks

Cannot rollback to previous
subtransaction

11
2

START T1

operation 1
operation 2
operation 3

CHAIN

operation 4
operation 5
operation 6

CHAIN

11
3

Savepoints versus Chained Transactions

11
3

• Both allow substructure to be imposed on a long-running application program
• Database context is preserved

• Cursors are kept

• Commit vs Savepoint
• Chained - rollback only to previous ‘savepoint’

• Savepoints - can rollback to arbitrary savepoint

• Locks
• Chained frees unwanted locks

11
4

Savepoints versus Chained Transactions

11
4

• Work lost
• Savepoints more flexible than flat transactions, as long as the system does not crash

• Restart
• Chained transactions can restart from most recent commit, as long as no processing

context hidden in local programming variables

• Both organise work into a sequence of actions

11
5

Nested Transactions
Transaction forms a hierarchy of subtransactions
(partial order on set of subtransactions)

Subtransactions may abort without aborting their parent transaction
• May restart subtransaction

Three rules for nested transactions:
• Commit Rule

• Rollback Rule

• Visibility Rule

11
6

Nested Transactions
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

11
7

Nested Transactions
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

START T/1

invoke T/1/1

invoke T/1/2

COMMIT

11
8

Nested Transactions
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

START T/1

invoke T/1/1

invoke T/1/2

COMMIT

START T/1/1

COMMIT

11
9

Nested Transactions
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

START T/1

invoke T/1/1

invoke T/1/2

COMMIT

START T/1/1

COMMIT

START T/1/2

COMMIT

12
0

Nested Transactions
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

START T/1

invoke T/1/1

invoke T/1/2

COMMIT

START T/2

COMMIT

START T/1/1

COMMIT

START T/1/2

COMMIT

12
1

Nested Transactions
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

START T/1

invoke T/1/1

invoke T/1/2

COMMIT

START T/2

COMMIT

START T/3

invoke T/3/1

COMMIT

START T/1/1

COMMIT

START T/1/2

COMMIT

12
2

Nested Transactions
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

START T/1

invoke T/1/1

invoke T/1/2

COMMIT

START T/2

COMMIT

START T/3

invoke T/3/1

COMMIT

START T/1/1

COMMIT

START T/1/2

COMMIT

START T/3/1

COMMIT

12
3

Commit Rule

12
3

The commit of a subtransaction makes the results accessible only to the parent

The final commit happens only when all ancestors finally commit

12
4

Rollback Rule

12
4

If any [sub]transaction rolls back, all of its subtransactions roll back

12
5

Visibility Rule

12
5

Changes made by a subtransaction are visible to its parent

Objects held by a parent can be made accessible to subtransactions

Changes made by a subtransaction are not visible to its siblings

12
6

Observations

12
6

Subtransactions are not fully equivalent to flat transactions:
• Atomic

• Consistency preserving

• Isolated

• Not durable, because of the commit rule

12
7

Observations

12
7

Nesting and program modularisation complement each other
• Well designed module has a clean interface, and no global variables

• If it touches the database, the database is a large global variable

• If the module is protected as a subtransaction, then database changes are kept clean too

Nested transactions permit intra-transaction parallelism

12
8

Emulating Nesting with Savepoints
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

12
9

Emulating Nesting with Savepoints
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

save T/1

13
0

Emulating Nesting with Savepoints
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

START T/1

invoke T/1/1

invoke T/1/2
COMMIT

save T/1

13
1

Emulating Nesting with Savepoints
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

START T/1

invoke T/1/1

invoke T/1/2
COMMIT

START T/2

COMMIT

START T/3

invoke T/3/1

COMMIT

START T/1/1

COMMIT

START T/1/2

COMMIT

START T/3/1

COMMIT

save T/1
save T/1/1

save T/3
save T/3/1

save T/2

save T/1/2

13
2

Observations

13
2

Using savepoints is more flexible than nested transactions for internal recovery
• Can roll back further

True nested transactions are needed in order to run subtransactions in parallel (Intra-
transaction parallelism)

• Emulating with savepoints needs 'subtransactions' to be run in strict sequence

True nested can pass locks selectively
• More flexible than savepoints

• “Similar but different”

13
3

Sagas
Saga: a collection of actions (= flat transactions) that form a long-duration transaction

Execution based around notion of compensating transactions
• Inverse of actions that allow them to be selectively rolled back

• Used to recover from partial execution

13
4

Sagas

13
4

Sagas specified as a digraph
• Nodes are either actions or the terminal nodes abort and complete

• One node is designated the start

Paths in graph represent sequences of actions
• Paths leading to abort are sequences of actions that cause the overall transaction to be

rolled back

• Paths leading to complete are successful sequences that make persistent changes to the
database

13
5

Saga Execution

13
5

Each action A has a compensating transaction A-1

Assume that if A is an action and α a sequence of legal actions, then AαA-1 ≣ α

If execution of a saga leads to abort, roll back the saga by executing the compensating
transactions

Next Lecture: Logging and Recovery

