

Ontology Engineering
COMP6215 Semantic Web Technologies

Dr Nicholas Gibbins - nmg@ecs.soton.ac.uk

3

Ontology Types
Representation ontologies

• Describe low level primitive representations
e.g. RDFS, OWL

General or upper-level ontologies
• Describe high-level, abstract, concepts; Usually domain independent

e.g. Cyc, DOLCE, WordNet, SUMO

Domain ontologies
• Describe a particular domain extensively

e.g. Gene Ontology, CIDOC CRM

Application ontologies
• Designed to answer to the needs of a particular application

e.g. FOAF, ESWC06

4

Ontology Building Methodologies
No standard methodology for ontology construction

There are a number of methodologies and best practices

The following life cycle stages are usually shared by the methodologies:
• Specification - scope and purpose

• Conceptualisation - determining the concepts and relations

• Formalisation - axioms, restrictions

• Implementation - using some ontology editing tool

• Evaluation - measure how well you did

• Documentation - document what you did

5

Specification
Specifying the ontology’s purpose and scope

• Why are you building this ontology?

• What will this ontology be used for?

• What is the domain of interest?
• An ontology for car sales probably doesn't need to know much about types and prices of

engine oil

• How much detail do you need?

6

Specification: Competency Questions
What are the questions you need the ontology to answer?

• These are competency questions

• Make a list of such questions and use as a check list when designing the ontology

• Helps to define scope, level of detail, evaluation, etc.

7

Specification: Competency Questions
The questions that you REALLY need

• You probably don’t need to worry about the questions that “perhaps someone might
need to ask someday”

The questions that CAN BE answered

• Can you get the necessary data to answer those questions?

• Permanent lack of some data may render parts of the ontology useless!

8

Conceptualisation
Identify the concepts to include in your ontology, and how they relate to each other

• Depends on your defined scope and competency questions

• Define unambiguous names and descriptions for classes and properties
(more on this in Documentation)

• Reach agreement (the hard part!)

The best tool to use:

9

Conceptualisation

Start with pen and paper,
diagramming software (e.g. Visio,
Mind Maps), or cards/postit notes

10

Conceptualisation: Reuse
Ontologies are meant to be reusable!

• Technology for reusing ontologies is still limited

Always a good idea to check any existing models or ontologies
• Check your database models or off-the-shelf ontologies

Check existing ontologies
• No need to reinvent the wheel, unless it is easier to do so!

• Ontology search engines

• Swoogle, Watson, lodlaundromat

11

What can you reuse?

11

• Databases

• Vocabularies

• Ontologies
• Some much re-used ontologies

• For describing persons: FOAF

• For describing documents: Dublin Core

• For describing social media: SIOC

• For describing vocabulary hierarchies: SKOS

• For describing e-commerce: Good Relations

• For Web metadata: schema.org

• ...

12

Formalisation
• Moving from a list of concepts to a formal model

• Define the hierarchy of concepts and relations

• Also note down any restrictions
• E.g. NonProfitOrg isDisjoint from ProfitOrg

• An email address is unique

13

Formalisation: Building the Class Hierarchy
Top-down

• Start with the most general classes and finish with the most detailed classes

Bottom-up
• Start with the most detailed classes and finish with the most general ones

Middle-out
• Start with the most obvious classes

• Group as required

• Then go upwards and downwards to the more general and more detailed classes
respectively

• Good for controlling scope and detail

14

Formalisation: Middle-Out Approach

Staff Student University

15

Formalisation: Middle-Out Approach

Staff Student University

Organisation

Research
Staff

Teaching
Staff

Undergrad
Student

Postgrad
Student

Person

16

Formalisation: Middle-Out Approach

Staff Student University

Organisation
affiliatedTo

studiesAt

worksAt

Research
Staff

Teaching
Staff

Undergrad
Student

Postgrad
Student

Person

17

Formalisation: Naming Conventions
• Not rules, but conventions

• Avoid spaces and uncommon delimiters in class and relation names
• e.g. use PetFood or Pet_Food instead of Pet Food or Pet*Food

• Capitalise each word in a class name
• e.g. PetFood instead of Petfood or even petfood

• Start names of relations with a lowercase letter
• e.g. pet_owner, petOwner

• Use singular nouns for classes
• e.g. Pet, Person, Shop

18

Formalisation: Class or Relation?
Is it a class or a relation?

It depends!

If the subclass doesn’t need any new relations (or restrictions), then consider making it
a relation

type of study
Full time

Part time
Student

Part Time Student

Student

Full Time Student

19

Formalisation: Class or Instance?
Is it a class or an instance?

• If it can have its own instances, then it should be a class

• If it can have its own subclasses, then it should be a class

Student University

John Smith Uni of Soton
studiesAt

rdf:type rdf:type

20

Formalisation: Transitivity of Class Hierarchy
subClassOf relation is always transitive

• Car is a subclass of Vehicle

• Vehicle is a subclass of
TransportationObject

• Any instance of Car is also a
TransportationObject

subClassOf is not the same as “part of”
• (see meronymy pattern later this lecture)

rdfs:subClassOf

rdfs:subClassOf

Car

TransportationObject

Vehicle

partOf

Car

Wheel

21

Formalisation: Tidy Your Hierarchy
Avoid subClassOf clutter!

• Break down your hierarchy further if you have too many direct subclasses of a class

Staff

Technician Administrator

Research Fellow

Res. Assistant

Senior RF

Professor

Lecturer

Senior Lecturer

22

Formalisation: Tidy Your Hierarchy
Avoid subClassOf clutter!

• Break down your hierarchy further if you have too many direct subclasses of a class

Staff

Technician Administrator

Research Fellow Res. Assistant

Senior RF
Professor

Lecturer

Senior Lecturer

Academic

Researcher

23

Formalisation: Where to Point my Relation?
Relations should point to the most general class

• But not too general

• e.g relations pointing to Thing!

• And not too specific

• e.g. relations pointing to the bottom of the hierarchy

As a rule of thumb, if the domain or range of a relation is a disjunction (union) of
classes, some refactoring is probably required

24

Formalisation: Where to Point my Relation?

Staff

Technician Administrator

Research Fellow

Res. Assistant

Senior RF
Professor

Lecturer

Senior Lecturer

AcademicResearcher

University

Module

works for

teaches

25

Formalisation: Where to Point my Relation?

Staff

Technician Administrator

Research Fellow
Res. Assistant

Senior RF Professor

Lecturer

Senior Lecturer

Academic

Researcher

University

Module

works for

teaches

26

Implementation
• Choose a language

• e.g. RDFS, OWL...

• Implement it with an ontology editor
• e.g. Protégé, SWOOP, TopQuadrant

• Edit the class hierarchy

• Add relationships

• Add restrictions

• Select appropriate value types, cardinality, etc

• Use a reasoner to check the consistency of your ontology
• e.g. Racer, Pellet, Fact++, HermiT

• Best to do this as you go along – easier to trace bugs in your modelling

27

Evaluation: Verification
Is your ontology correct?

• Is it syntactically correct?

• Is it consistent?

Implementing the ontology in an ontology editor helps to get the syntax correct

Using a reasoner helps you check that it’s consistent

You can also validate your OWL ontology online:

• http://visualdataweb.de/validator/

28

Evaluation: Validation
Does your ontology successfully do what you set out to do?

Check the ontology against your competency questions

• Write the questions in SPARQL or in similar query languages

• Can you get the answers you need?

• Is it quick enough?

• Add additional properties or restructure the ontology to increase efficiency?

29

Documentation
Documenting the design and implementation rational is crucial for future usability and
understanding of the ontology

• Rational, design options, assumptions, decisions, examples, etc.

Structured documentation may clarify these assumptions

Douglas Skuce proposed a convention for structured
documentation of ontological assumptions in 1995

• Conceptual assumptions (C)
(long definition, comparing with other classes/properties)

• Terminological assumptions (T) (alternative terms used)

• Definitional assumption (D) (short definition)

• Examples (E)

30

Structured documentation
Instead of putting C/T/D/E into a single rdfs:comment, structure the metadata using
appropriate properties from RDFS and SKOS (import SKOS into your ontology)

Conceptual assumptions (C)
• skos:scopeNote, rdfs:comment

Terminological assumptions (T)
• skos:prefLabel, skos:altLabel, rdfs:label

Definitional assumptions (D)
• skos:definition

Examples (E)
• skos:example

Use rdfs:isDefinedBy to indicate if definition is taken from an external source

31

32

Summary
Ontology construction is an iterative process

• Build ontology, try to use it, fix errors, extend, use again, and repeat

There is no single correct model for your domain
• The same domain may be modelled in several ways

Following best practices helps to build good ontologies
• Well scoped, documented, structured

Reuse existing ontologies if possible
• Check your database models and existing ontologies

• Reuse or learn from existing representations

• (most ontology editing tools don’t yet provide good support for reuse)

33

Common Pitfalls
Over scaling and complicating your ontology

• Need to learn when to stop expanding the ontology

Lack of documentation
• For the design rationale, vocabulary and structure decisions, intended use, etc.

Redundancy
• Increase chances of inconsistencies and maintenance cost

Using ambiguous terminology
• Others might misinterpret your ontology

• Mapping to other ontologies will be more difficult

Next Lecture:
Ontology Design Patterns

