From Set Theory to Predicate Logic

Nicholas Gibbins

February 16, 2022

1 Sets

Definition: Set

A set is an unordered collection of objects, without duplicates. A set A containing the objects a, b and c is written as $A = \{a, b, c\}$.

Definition: Empty Set

The *empty set* (written \emptyset or $\{\}$) is the set containing nothing.

Definition: Set Membership

An object a is a *member* of a set A (written $a \in A$) if it is contained within that collection.

Note: $a \in A$ can be read as "a is a member of A" or "a belongs to A".

Definition: Set Equality

Two sets which contain the same objects are considered to be equal (the order of the objects is unimportant).

Example: If $A = \{a, b, c\}$, $B = \{b, a, c\}$ and $C = \{a, b, d\}$, then A = B but $A \neq C$

Definition: Cardinality

The cardinality of a set A (written |A| or #A) is the number of members of A.

Example: If $A = \{a, b, c\}$, then |A| = 3

Definition: Subset

A set A is a *subset* of a set B (written $A \subseteq B$) if every member of A is also a member of B.

Example: If $A = \{a, b\}$, $B = \{a, b, c\}$ and $C = \{a, c, d\}$, then $A \subseteq B$, but $A \not\subseteq C$

Definition: Strict Subset

A set A is a *strict subset* of a set B (written $A \subset B$) if every member of A is also a member of B, and $A \neq B$.

Example: If $A = \{a, b\}$, $B = \{a, b, c\}$ and $C = \{a, b\}$, then $A \subset B$, but $A \not\subset C$

Definition: Set Intersection

The *intersection* of two sets A and B (written as $A \cap B$) is the set containing every object which is **both** a member of A **and** a member of B.

Example: If $A = \{a, b, c\}$ and $B = \{a, c, d\}$ then $A \cap B = \{a, c\}$

Definition: Set Union

The union of two sets A and B (written as $A \cup B$) is the set containing every object that is a member of A or a member of B, or a member of both A and B.

Example: If $A = \{a, b, c\}$ and $B = \{a, c, d\}$ then $A \cup B = \{a, b, c, d\}$

Mnemonic: \cup stands for U(nion)

Definition: Set Difference

The *difference* of two sets A and B (written as A - B) is the set of every object that is a member of A but not a member of B.

Example: If $A = \{a, b, c\}$ and $B = \{a, c, d\}$ then $A - B = \{b\}$

Note: $(A - B) \neq (B - A)$

Definition: Powerset

The *powerset* of A (written $\mathbb{P}(A)$ or 2^A) is the set containing all possible subsets of A, including A and the empty set.

Example: If $A = \{a, b, c\}$, then

 $\mathbb{P}(A) = \{\{a, b, c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a\}, \{b\}, \{c\}, \{\}\}$

Note: $|\mathbb{P}(A)| = 2^{|A|}$.

Definition: Set Comprehension

Rather than explicitly list the members of a set as $A = \{a_1, \ldots, a_n\}$, we can define a set by specifying the properties that its members must have. This is known as *set comprehension*.

Set comprehension is expressed using *set-builder notation*, for which the general form is $\{x : \phi(x)\}$, where x is a variable and $\phi(x)$ is a predicate containing x which holds true for all members of the set. $\{x : \phi(x)\}$ can be read as "the set of x for which $\phi(x)$ is true".

Example: $\{x : x \in \mathbb{Z} \land x > 0\}$ The set of positive integers - \mathbb{Z} is the set of integers. Read as: "the set of x's where x is an integer and x is greater than zero".

Example: $\{x : x \in \mathbb{Z} \land x = x^2\}$ The set of integers which are equal to their square: $\{0, 1\}$

Example: $\{\langle x, y \rangle : x \in A \land y \in B\}$ The set of pairs $\langle x, y \rangle$ where x is a member of set A and y is a member of set B. This is the definition of the Cartesian product $A \times B$ using set-builder notation.

Definition: Tuple

A *tuple* is an ordered collection of objects, which may include duplicates. The tuple containing a, b, c and a, in that order, is written $\langle a, b, c, a \rangle$

Definition: Arity

The *degree* or *arity* of a tuple is the number of objects in the tuple.

Definition: Pair

A tuple containing two objects (a tuple of arity 2) is known as a *pair*.

Definition: Cartesian Product

The *Cartesian product* of two sets A and B (written $A \times B$) is a set of pairs, where each pair contains one member from A and one member from B, and which contains all possible combinations of members from A and B.

Example: If $A = \{a, b, c\}$ and $B = \{c, d, e\}$, then $A \times B = \{\langle a, c \rangle, \langle a, d \rangle, \langle a, e \rangle, \langle b, c \rangle, \langle b, d \rangle, \langle b, e \rangle, \langle c, c \rangle, \langle c, d \rangle, \langle c, e \rangle\}$ **Note:** $|A \times B| = |A| * |B|$

Definition: Binary Relation

A binary relation R from set A to set B is a set of pairs, where each pair contains one member from A and one member from B.

Example: If $A = \{a, b, c\}$ and $B = \{c, d, e\}$, then a possible relation R from A to B might be:

$$R = \{ \langle a, c \rangle, \langle a, e \rangle, \langle b, d \rangle, \langle c, c \rangle, \langle c, d \rangle, \}$$

Note: $R \subseteq A \times B$

Definition: Domain

The *domain* of a binary relation R is the set that the relation goes *from*.

Example: The domain of R in the above example is A.

Definition: Range

The range of a binary relation R is the set that the relation goes to.

Example: The range of R in the above example is B.

Mnemonic: the range of a cannon is the distance **to** which it can fire a cannonball.

2 Logic

2.1 Propositional Calculus

Definition: Truth Values

The truth values are *true* and *false* (sometimes written as \top and \perp respectively).

Definition: Proposition

A *proposition* is a truth-valued expression. That is, a proposition can either be *true* or *false*.

Example: " $a \in A$ " is a proposition (either a is a member of A, in which case " $a \in A$ " is *true*, or a is not a member of A, in which case " $a \in A$ " is *false*). " $A \times B$ " is not a proposition, because its value is a set.

Definition: Logical Connectives

Propositions may be combined to form *compound propositions* by using the *logical connectives*: negation (\neg) , conjunction (\wedge) , disjunction (\vee) and implication (\Rightarrow) .

Definition: Negation

The negation of a proposition ϕ (written as $\neg \phi$, and read as "not ϕ ") is true if ϕ is false.

ϕ	$\neg \phi$
false	true
true	false

Definition: Conjunction (logical and)

The conjunction of two propositions ϕ and ψ (written as $\phi \wedge \psi$, and read as " ϕ and ψ ") is true if both ϕ and ψ are true.

Mnemonic: \land stands for "And"

ϕ	ψ	$\phi \wedge \psi$
false	false	false
false	true	false
true	false	false
true	true	true

Definition: Disjunction (logical or)

The disjunction of two propositions ϕ and ψ (written as $\phi \lor \psi$, and read as " ϕ or ψ ") is true if either ϕ is true or ψ is true (or if both ϕ and ψ are true – \lor is the inclusive-or).

Mnemonic: \lor stands for "vel" (the Latin for "or")

ϕ	ψ	$\phi \vee \psi$
false	false	false
false	true	true
true	false	true
true	true	true

Definition: Implication

A material implication $\phi \Rightarrow \psi$ (read as " ϕ implies ψ " or "if ϕ then ψ ") is a fourth common logical operator; it is true unless ϕ is true and ψ is false.

ϕ	ψ	$\phi \Rightarrow \psi$
false	false	true
false	true	true
true	false	false
true	true	true

Definition: Equivalences

The following equivalences hold between expressions in propositional logic:

$$\neg \neg \phi \equiv \phi$$
$$\neg (\phi \land \psi) \equiv \neg \phi \lor \neg \psi$$
$$\neg (\phi \lor \psi) \equiv \neg \phi \land \neg \psi$$
$$\phi \Rightarrow \psi \equiv \neg \phi \lor \psi$$

2.2 Predicate Logic

Predicate logic extends propositional logic by adding *variables*, *functions*, *predicates* and *quantification* to the connectives described above. Predicate logic distinguishes between *terms* and *formulas*.

Definition: Term

A term is a predicate logic expression which is not truth-valued.

Definition: Formula

A *formula* is a predicate logic expression which is truth-valued.

Definition: Variables

Variables are indicated with lower case letters: x, y, z etc. All variables are terms.

Definition: Function

A function is an expression $f(t_1, t_2, ..., t_n)$ where each t_i is a term and f is a function symbol with a valence of n (i.e. it takes n arguments). A function with a valence of 0 is considered to be a constant term.

Example: In the expression *john*, *john* is a constant (a function with a valence of 0).

Example: In the expression fatherOf(john), fatherOf is a function of valence 1.

Definition: Predicate

A *predicate* is a truth-valued expression $p(t_1, t_2, ..., t_n)$ where each t_i is a term and p is a function symbol with a valence of n (i.e. it takes n arguments).

Example: In the expression *likes*(*john*, *mary*), *likes* is a predicate with a valence of 2.

Definition: Quantification

There are two quantifiers: \exists and \forall , respectively read as "there exists" and "for all". A quantified formula consists of a quantifier, a variable and a formula.

If ϕ is a formula and x is a variable, then $\exists x.\phi$ can be read as "there exists some x such that ϕ is true".

If ϕ is a formula and x is a variable, then $\forall x.\phi$ can be read as "for all x, ϕ is true".

Example: $\forall x.man(x) \Rightarrow mortal(x)$ (i.e. for all x, if man(x) is true then mortal(x) is true - or in other words, "all men are mortal")