# From Set Theory to Predicate Logic 

Nicholas Gibbins

February 16, 2022

## 1 Sets

## Definition: Set

A set is an unordered collection of objects, without duplicates. A set $A$ containing the objects $a, b$ and $c$ is written as $A=\{a, b, c\}$.

## Definition: Empty Set

The empty set (written $\emptyset$ or $\}$ ) is the set containing nothing.

## Definition: Set Membership

An object $a$ is a member of a set $A$ (written $a \in A$ ) if it is contained within that collection.
Note: $a \in A$ can be read as " $a$ is a member of $A$ " or " $a$ belongs to $A$ ".

## Definition: Set Equality

Two sets which contain the same objects are considered to be equal (the order of the objects is unimportant).

Example: If $A=\{a, b, c\}, B=\{b, a, c\}$ and $C=\{a, b, d\}$, then $A=B$ but $A \neq C$

## Definition: Cardinality

The cardinality of a set $A$ (written $|A|$ or $\# A$ ) is the number of members of A .
Example: If $A=\{a, b, c\}$, then $|A|=3$

## Definition: Subset

A set $A$ is a subset of a set $B$ (written $A \subseteq B$ ) if every member of $A$ is also a member of $B$.
Example: If $A=\{a, b\}, B=\{a, b, c\}$ and $C=\{a, c, d\}$, then $A \subseteq B$, but $A \nsubseteq C$

## Definition: Strict Subset

A set $A$ is a strict subset of a set $B$ (written $A \subset B$ ) if every member of $A$ is also a member of $B$, and $A \neq B$.

Example: If $A=\{a, b\}, B=\{a, b, c\}$ and $C=\{a, b\}$, then $A \subset B$, but $A \not \subset C$

## Definition: Set Intersection

The intersection of two sets $A$ and $B$ (written as $A \cap B$ ) is the set containing every object which is both a member of $A$ and a member of $B$.

Example: If $A=\{a, b, c\}$ and $B=\{a, c, d\}$ then $A \cap B=\{a, c\}$

## Definition: Set Union

The union of two sets $A$ and $B$ (written as $A \cup B$ ) is the set containing every object that is a member of $A$ or a member of $B$, or a member of both $A$ and $B$.

Example: If $A=\{a, b, c\}$ and $B=\{a, c, d\}$ then $A \cup B=\{a, b, c, d\}$
Mnemonic: $\cup$ stands for $U($ nion $)$

## Definition: Set Difference

The difference of two sets $A$ and $B$ (written as $A-B$ ) is the set of every object that is a member of $A$ but not a member of $B$.

Example: If $A=\{a, b, c\}$ and $B=\{a, c, d\}$ then $A-B=\{b\}$
Note: $(A-B) \neq(B-A)$

## Definition: Powerset

The powerset of $A$ (written $\mathbb{P}(A)$ or $2^{A}$ ) is the set containing all possible subsets of $A$, including $A$ and the empty set.

Example: If $A=\{a, b, c\}$, then

$$
\mathbb{P}(A)=\{\{a, b, c\},\{a, b\},\{a, c\},\{b, c\},\{a\},\{b\},\{c\},\{ \}\}
$$

Note: $|\mathbb{P}(A)|=2^{|A|}$.

## Definition: Set Comprehension

Rather than explicitly list the members of a set as $A=\left\{a_{1}, \ldots, a_{n}\right\}$, we can define a set by specifying the properties that its members must have. This is known as set comprehension.

Set comprehension is expressed using set-builder notation, for which the general form is $\{x: \phi(x)\}$, where $x$ is a variable and $\phi(x)$ is a predicate containing $x$ which holds true for all members of the set. $\{x: \phi(x)\}$ can be read as "the set of $x$ for which $\phi(x)$ is true".

Example: $\{x: x \in \mathbb{Z} \wedge x>0\}$
The set of positive integers - $\mathbb{Z}$ is the set of integers.
Read as: "the set of $x$ 's where $x$ is an integer and $x$ is greater than zero".
Example: $\left\{x: x \in \mathbb{Z} \wedge x=x^{2}\right\}$
The set of integers which are equal to their square: $\{0,1\}$
Example: $\{\langle x, y\rangle: x \in A \wedge y \in B\}$
The set of pairs $\langle x, y\rangle$ where $x$ is a member of set $A$ and $y$ is a member of set $B$. This is the definition of the Cartesian product $A \times B$ using set-builder notation.

## Definition: Tuple

A tuple is an ordered collection of objects, which may include duplicates. The tuple containing $a, b, c$ and $a$, in that order, is written $\langle a, b, c, a\rangle$

## Definition: Arity

The degree or arity of a tuple is the number of objects in the tuple.

## Definition: Pair

A tuple containing two objects (a tuple of arity 2 ) is known as a pair.

## Definition: Cartesian Product

The Cartesian product of two sets $A$ and $B$ (written $A \times B$ ) is a set of pairs, where each pair contains one member from $A$ and one member from $B$, and which contains all possible combinations of members from $A$ and $B$.

Example: If $A=\{a, b, c\}$ and $B=\{c, d, e\}$, then

$$
A \times B=\{\langle a, c\rangle,\langle a, d\rangle,\langle a, e\rangle,\langle b, c\rangle,\langle b, d\rangle,\langle b, e\rangle,\langle c, c\rangle,\langle c, d\rangle,\langle c, e\rangle\}
$$

Note: $|A \times B|=|A| *|B|$

## Definition: Binary Relation

A binary relation $R$ from set $A$ to set $B$ is a set of pairs, where each pair contains one member from $A$ and one member from $B$.

Example: If $A=\{a, b, c\}$ and $B=\{c, d, e\}$, then a possible relation $R$ from $A$ to $B$ might be:

$$
R=\{\langle a, c\rangle,\langle a, e\rangle,\langle b, d\rangle,\langle c, c\rangle,\langle c, d\rangle,\}
$$

Note: $R \subseteq A \times B$

## Definition: Domain

The domain of a binary relation $R$ is the set that the relation goes from.

Example: The domain of $R$ in the above example is $A$.

## Definition: Range

The range of a binary relation $R$ is the set that the relation goes $t o$

Example: The range of $R$ in the above example is $B$.

Mnemonic: the range of a cannon is the distance to which it can fire a cannonball.

## 2 Logic

### 2.1 Propositional Calculus

## Definition: Truth Values

The truth values are true and false (sometimes written as $\top$ and $\perp$ respectively).

## Definition: Proposition

A proposition is a truth-valued expression. That is, a proposition can either be true or false.

Example: " $a \in A$ " is a proposition (either $a$ is a member of $A$, in which case " $a \in A$ " is true, or $a$ is not a member of $A$, in which case " $a \in A$ " is false). " $A \times B$ " is not a proposition, because its value is a set.

## Definition: Logical Connectives

Propositions may be combined to form compound propositions by using the logical connectives: negation $(\neg)$, conjunction $(\wedge)$, disjunction $(\vee)$ and implication $(\Rightarrow)$.

## Definition: Negation

The negation of a proposition $\phi$ (written as $\neg \phi$, and read as "not $\phi$ ") is true if $\phi$ is false.

| $\phi$ | $\neg \phi$ |
| :---: | :---: |
| false <br> true | true |
| false |  |

## Definition: Conjunction (logical and)

The conjunction of two propositions $\phi$ and $\psi$ (written as $\phi \wedge \psi$, and read as " $\phi$ and $\psi$ ") is true if both $\phi$ and $\psi$ are true.

Mnemonic: $\wedge$ stands for "And"

| $\phi$ | $\psi$ | $\phi \wedge \psi$ |
| :---: | :---: | :---: |
| false | false | false |
| false | true | false |
| true | false | false |
| true | true | true |

## Definition: Disjunction (logical or)

The disjunction of two propositions $\phi$ and $\psi$ (written as $\phi \vee \psi$, and read as " $\phi$ or $\psi$ ") is true if either $\phi$ is true or $\psi$ is true ( $\mathbf{o r}$ if both $\phi$ and $\psi$ are true -V is the inclusive-or).

Mnemonic: $\vee$ stands for "vel" (the Latin for "or")

| $\phi$ | $\psi$ | $\phi \vee \psi$ |
| :---: | :---: | :---: |
| false | false | false |
| false | true | true |
| true | false | true |
| true | true | true |

## Definition: Implication

A material implication $\phi \Rightarrow \psi$ (read as " $\phi$ implies $\psi$ " or "if $\phi$ then $\psi$ ") is a fourth common logical operator; it is true unless $\phi$ is true and $\psi$ is false.

| $\phi$ | $\psi$ | $\phi \Rightarrow \psi$ |
| :---: | :---: | :---: |
| false | false | true |
| false | true | true |
| true | false | false |
| true | true | true |

## Definition: Equivalences

The following equivalences hold between expressions in propositional logic:

$$
\begin{aligned}
& \neg \neg \phi \equiv \phi \\
& \neg(\phi \wedge \psi) \equiv \neg \phi \vee \neg \psi \\
& \neg(\phi \vee \psi) \equiv \neg \phi \wedge \neg \psi \\
& \phi \Rightarrow \psi \equiv \neg \phi \vee \psi
\end{aligned}
$$

### 2.2 Predicate Logic

Predicate logic extends propositional logic by adding variables, functions, predicates and quantification to the connectives described above. Predicate logic distinguishes between terms and formulas.

## Definition: Term

A term is a predicate logic expression which is not truth-valued.

## Definition: Formula

A formula is a predicate logic expression which is truth-valued.

## Definition: Variables

Variables are indicated with lower case letters: $x, y, z$ etc. All variables are terms.

## Definition: Function

A function is an expression $f\left(t_{1}, t_{2}, \ldots t_{n}\right)$ where each $t_{i}$ is a term and $f$ is a function symbol with a valence of $n$ (i.e. it takes $n$ arguments). A function with a valence of 0 is considered to be a constant term.

Example: In the expression john, john is a constant (a function with a valence of 0 ).
Example: In the expression father $O f(j o h n)$, father $O f$ is a function of valence 1.

## Definition: Predicate

A predicate is a truth-valued expression $p\left(t_{1}, t_{2}, \ldots t_{n}\right)$ where each $t_{i}$ is a term and $p$ is a function symbol with a valence of $n$ (i.e. it takes $n$ arguments).

Example: In the expression likes(john, mary), likes is a predicate with a valence of 2.

## Definition: Quantification

There are two quantifiers: $\exists$ and $\forall$, respectively read as "there exists" and "for all". A quantified formula consists of a quantifier, a variable and a formula.

If $\phi$ is a formula and $x$ is a variable, then $\exists x . \phi$ can be read as "there exists some $x$ such that $\phi$ is true".

If $\phi$ is a formula and $x$ is a variable, then $\forall x \cdot \phi$ can be read as "for all $x, \phi$ is true".
Example: $\forall x \cdot \operatorname{man}(x) \Rightarrow \operatorname{mortal}(x)$ (i.e. for all x , if $\operatorname{man}(\mathrm{x})$ is true then mortal(x) is true - or in other words, "all men are mortal")

