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Why do we need Description Logics?

RDF Schema isn’t sufficient for all tasks
« There are things you can’t express
* There are things you can’t infer
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Description Logics

A family of knowledge representation formalisms
« A subset of first order predicate logic (FOPL)
« Decidable - trade-off of expressivity against algorithmic complexity
« Well understood - derived from work in the mid-80s to early 90s
« Model-theoretic formal semantics
« Simpler syntax than FOPL

This module assumes that you're familiar with FOPL.

If you need a refresher, the following resources are available:
 Lecture notes for COMP1215 Foundations of Computer Science (on ECS intranet)
« Johnsonbaugh, R. (2014) Discrete Mathematics, 7th ed. Chapter 1. (ebook via library)
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Description Logics

Description logics restrict the predicate types that can be used
« Unary predicates denote concept membership

Person(x)

» Binary predicates denote roles between instances

hasChild(x,y)

Note on terminology: the DL literature uses slightly different terms to those in RDFS
« Class and concept are interchangeable terms
« Role, relation and property are interchangeable terms



%EJ’@ University of
\&/Southampton

Defining ontologies with Description Logics

Describe classes (concepts) in terms of their necessary and sufficient conditions

Consider an attribute A of a class C:

 Attribute A is a necessary condition for membership of C
« If an object is an instance of C, then it has A

 Attribute A is a sufficient condition for membership of C
* If an object has A, then it is an instance of C
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Description Logic Reasoning Tasks

Satisfaction
« “Can this class have any instances?"

Subsumption
 "Is every instance of class C necessarily an instance of class D?"

Classification
« "What classes is this object an instance of?"
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Expressions

Description logic expressions consist of:

« Concept and role descriptions:
« Atomic concepts: Person
« Atomic roles: hasChild
« Complex concepts: “person with two living parents”
« Complex roles: “has parent’s brother” (i.e. "has uncle")

« AXioms that make statements about how concepts or roles are related to each other:

« “Every person with two living parents is thankful”
« “hasUncle is equivalent to has parent’s brother”
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Concept Constructors

Used to construct complex concepts:

* Boolean concept constructors -C cubD CnbD
« Restrictions on role successors VR.C 3R.C

« Number/cardinality restrictions <nR >=nR =nR
 Nominals (singleton concepts) {x}

« Universal concept, top T

Contradiction, bottom 1
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Role Constructors

Used to construct complex roles:
« Concrete domains (datatypes)
* Inverse roles R~
« Role composition RoS
« Transitive roles R*
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OWL and Description Logics

* Not every description logic supports all constructors
 More constructors = more expressive = higher complexity

* For example, OWL DL is equivalent to the logic SHOIN (D)
« Atomic concepts and roles
« Boolean operators

Universal, existential restrictions, number restrictions

Role hierarchies

Nominals

Inverse and transitive roles (but not role composition)
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Boolean Concept Constructors: Intersection

Child N Happy

The class of things which are both
children and happy

Read as “Child AND Happy”
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Boolean Concept Constructors: Union

Rich U Famous

The class of things which are rich or Rich Famous
famous (or both)

Read as “Rich OR Famous”
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Boolean Concept Constructors: Complement

—Happy
The class of things which are not happy Happy

Read as “NOT Happy”
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Restrictions: Existential

JhasPet. Cat

The class of things which have some pet
that is a cat
« must have at least one pet

Read as “hasPet SOME Cat”

17
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Restrictions: Existential

JhasPet. Cat

The class of things which have some pet
that is a cat
« must have at least one pet

Read as “hasPet SOME Cat”
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Restrictions: Universal
VhasPet. Cat

The class of things all of whose pets are
cats

« Or, which only have pets that are cats
* includes those things which have no pets

Read as “hasPet ONLY Cat”
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Restrictions: Universal
VhasPet. Cat

The class of things all of whose pets are
cats

« Or, which only have pets that are cats
* includes those things which have no pets

Read as “hasPet ONLY Cat”
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Restrictions: Universal
VhasPet. Cat

The class of things all of whose pets are
cats

« Or, which only have pets that are cats
* includes those things which have no pets

Read as “hasPet ONLY Cat”
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Restrictions: Number

= 1 hasPet

The class of things which have exactly one
pet
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Restrictions: Number

= 1 hasPet

The class of things which have exactly one
pet
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Restrictions: Number

> 2 hasPet

The class of things which have at least
two pets
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Restrictions: Number

> 2 hasPet

The class of things which have at least
two pets
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Knowledge Bases

A description logic knowledge base (KB) has two parts:

« TBox: terminology

« A set of axioms describing the structure of the domain
(i.e., a conceptual schema)

« Concepts, roles

 ABox: assertions
« A set of axioms describing a concrete situation (data)
* Instances
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TBox Axioms

Concept inclusion
(C is a subclass of D)

Concept equivalence
(C is equivalent to D)

Role inclusion
(R is a subproperty of S)

Role equivalence
(R is equivalent to S)

Role transitivity
(R composed with itself is a
subproperty of R)
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Revisiting Necessary and Sufficient Conditions

“Attribute A is a necessary/sufficient condition for membership of C”

Instead of talking directly about A, we can make a class expression (using the concept
constructors) that represents the class of things with attribute A - call it D

« Membership of D is necessary/sufficient for membership of C

28
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Revisiting Necessary and Sufficient Conditions

Membership of D is a necessary condition for membership of C

CED

Membership of D is a sufficient condition for membership of C

C 32D

Membership of D is both a necessary and a sufficient condition for membership of C

C =D

29
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Revisiting Necessary and Sufficient Conditions

Some common terminology:
CCED

« Cis a primitive or partial class
C=D

« Cis a defined class

(you’ll see these terms used in the Protégé OWL Tutorial)
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ABox AxXioms

Concept instantiation
C(x)
« X is of type C

Role instantiation

R(x,y)
« X has R of y

ae
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Axiom Examples

Every person is either living or dead
Every happy child has a loving parent

Every child who eats only cake is
unhealthy

No elephants can fly

A mole is a sauce from Mexico that
contains chili

All Englishmen are mad
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Axiom Examples

Every person is either living or dead
Every happy child has a loving parent

Every child who eats only cake is
unhealthy

No elephants can fly

A mole is a sauce from Mexico that
contains chili

All Englishmen are mad
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Person E Living U Dead
Child N Happy E JhasParent. Loving
Child 1M Veats. Cake M Jeats. Cake = —Healthy

Elephant N FlyingThing = 1

Mole =
Sauce M JhasOrigin. {Mexico} I
JhasIngredient. Chili

dbornln. {England} N Male E Mad

33



Tips for Description Logic Axioms

* No single ‘correct’ answer - different modelling choices

* Break sentence down into pieces
« e.g. “successful man”, “spicy ingredient” etc
« Look for nouns and adjectives (concepts)

* Look for verb phrases (roles)

« Look for indicators of axiom type:
« “Every X is Y’ - inclusion axiom
« “X'is Y" - equivalence axiom

« Remember that VR.C is satisfied by instances which have no value for R
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Semantics
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Description Logics and Predicate Logic

Description Logics are a subset of first order Predicate Logic with a simplified syntax

Every DL expression can be converted into an equivalent FOPL expression

37



Description Logics and Predicate logic

Every concept C is translated to a formula ¢, (x)

Every role R is translated to a formula ¢» (X, y)

Boolean concept constructors:

$_c(x) = ¢ (x)
bcup(x) = Pc(x) V pp(x)
Gcnp(x) = ¢Pc(x) A dpp(x)

Restrictions:

$Parc(x) = y. pr(x,y) A pc(y)
Gvrc(x) =Vy.or(x,y) = ¢pc(¥)

S

University of

outhampton

38



Description Logics and Predicate logic

Axioms are translated as follows:

Concept inclusion CED

Vx.pc(x) = ¢p(x)

Concept equivalence C = D

Vx.¢pc(x) © ¢p(x)
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Example

“Every child who eats cake is happy”
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Example

“Every child who eats cake is happy”

Child r Jeats. Cake E Happy
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Example

“Every child who eats cake is happy”

Child r Jeats. Cake E Happy

VX Pchitanaeats.cake (X) = ¢Happy (x)
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Example

“Every child who eats cake is happy”

Child r Jeats. Cake = Happy

VX Pchitanaeats.cake (X) = ¢Happy (x)
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Example

“Every child who eats cake is happy”

Child r Jeats. Cake E Happy

VX Pchitanaeats.cake (X) = ¢Happy (x)
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Example

“Every child who eats cake is happy”

Child r Jeats. Cake E Happy

VX Pchitanaeats.cake (X) = ¢Happy (x)
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Example

“Every child who eats cake is happy”

Child r Jeats. Cake E Happy

VX Pchitanaeats.cake (X) = ¢Happy (x)

VX Pcnita(X) A Pacats.care(X) = ¢Happy (x)
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Example

“Every child who eats cake is happy”

Child r Jeats. Cake E Happy

VX Pchitanaeats.cake (X) = ¢Happy (x)

VX Pcnita(X) A Pacats.care(X) = ¢Happy (x)
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Example

“Every child who eats cake is happy”

Child r Jeats. Cake E Happy

VX Pchitanaeats.cake (X) = ¢Happy (x)

VX Pcnita(X) A Pacats.care(X) = ¢Happy (x)
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Example

“Every child who eats cake is happy”

Child r Jeats. Cake E Happy

VX Pchitanaeats.cake (X) = ¢Happy (x)
VX Pcnita(X) N Paeats.care(X) = PHappy (x)

VX Gcnita(X) AY Pears (X, ¥) A Peare(y) = ¢Happy (x)
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Example

“Every child who eats cake is happy”

Child r Jeats. Cake E Happy

VX Pchitanaeats.cake (X) = ¢Happy (x)
VX Pcnita(X) AN Paeats.care(X) = ¢Happy (x)

VX Pcnia(X) AY Gears (X, ¥) A Peare () = ¢Happy (x)
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Description Logic Semantics

A is the domain (non-empty set of individuals)

Interpretation function J (or ext()) maps:
« Concept expressions to their extensions
(set of instances of that concept, subsets of A)

. Roles to subsets of AXA

. Individuals to elements of A
Examples:

° Cg is the set of members of C

° (C L D)j is the set of members of either C or D
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Description Logic Semantics
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Syntax Semantics Notes

(C n D)? c’ n D’ Conjunction

(C u D)’ ¢’ u D’ Disjunction
(=C)’ A\C’ Complement
(3R.C)’ {x]3y .(x,y) ER? Ay € C7} Existential
(VR.C)’ {x|Vy (x,y) € R = y € C7} Universal
(=nR)’ (x|#{y|(x,y) € R} = n} Min cardinality
(€ nR)’ {x|#{y|(x,y) € R} < n} Max cardinality
(=nR)’ {x|#{y|[(x,y) € R7} = n} Exact cardinality
(L)’ 1) Bottom

(T)? A Top
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Interpretation Example

A={v,wx,vy,z} L
A = {v,w,x}
B’ = {x,y}

R? = {(v,w), (v, x), (y, %), {x, 2)}

53
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Interpretation Example

(=B) =
(AuB)! =
(=4 N B) =
(3R.B)’ =
(VR.B)’ =

(3R.(3R.A)) =

(3R.~(AN B))’
(3R™.A) =
(R*)? = Iaad

54
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Answers

(=B)! = {v,w, z}
(AuB)! = {v,w,x,y}
(=A N B) = {y}
(3R.B)? = {v,y}
(VR.B)? = {y,w,z}

(3R.3R.4A)) ={

(3R.~(AN B)) = {v,x}
(3R .A)! = {w,x, z}
(R*) = {(v,w), (v, x), (v, 2),{y, x),(V, 2),{x, 2)} T,

55
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DL Reasoning Revisited

A description logic knowledge base comprises:
« A TBox defining concepts and roles
« An ABox containing assertations about instances

K = (TBox, ABox)

We can construct an interpretation 7 = (A,-7) which maps the instances, concepts and
roles in K onto a domain A via an interpretation function -’

We can redefine the reasoning tasks in terms of 7

57



Satisfaction

“Can this class have any instances?”

A class C is satisfiable with respect to a KB K iff
there exists an interpretation 7 of K with ¢7 = ¢
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Subsumption

“Is every instance of this class necessarily an instance of this other class?”

A class C is subsumed by a class D with respect to a KB K iff
for every interpretation 7 of K, ¢’ < D’
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Equivalence

“Is every instance of this class necessarily an instance of this other class, and vice
versa?”

A class C is equivalent to a class D with respect to a KB K iff
for every interpretation 7 of K, ¢ = D’

60



Classification

“Is this individual necessarily an instance of this class?”

An individual x is an instance of class C wrt a KB K iff
for every interpretation 7 of K, x” € ¢’

University of

Southampton

61



Sgﬂ\iceﬁictlﬁfpton
Reduction to Satisfaction

Tableau-based reasoners for description logics (the predominant modern approach)
reduce all reasoning tasks to satisfaction:

Subsumption

« C is subsumed by D & (C n—D) is unsatisfiable
Equivalence

« C is equivalent to D & both (€ N —=D) and(—C n D) are unsatisfiable
Classification

« x is an instance of € & (=C 1 {x}) is unsatisfiable

62
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Further Reading

Daniele Nardi and Ronald J. Brachman (2003) An Introduction to Description Logics, in
Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi and Peter F.
Patel-Schneider (eds) The Description Logic Handbook: Theory, implementation and

applications, Cambridge University Press, 2003, pp.1-40.

F. Baader and W. Nutt (2003) Basic Description Logics, in Franz Baader, Diego
Calvanese, Deborah L. McGuinness, Daniele Nardi and Peter F. Patel-Schneider (eds)
The Description Logic Handbook: Theory, implementation and applications, Cambridge

University Press, 2003, pp.47-100.
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Next Lecture: OWL



