University of

Southampton

4 University of

\&/Southampton

Access Structures
COMP3211 Advanced Databases

Dr Nicholas Gibbins - nmg@ecs.soton.ac.uk

University of

Southampton

Overview

* Index basics
« Sequential files
« Dense indexes
« Sparse indexes
« Multi-level indexes
« Secondary indexes
* Indirection

 B+trees
« Hash tables

4 University of

\&/Southampton

Index Basics

R _ University of
\&/Southampton

Index basics

« Relations are stored in files
* Files are stored as collections of blocks
* Blocks contain records that correspond to tuples in the relation

« How do we find the tuples that match some criteria?

University of
@Southampton

Indexes

matching
records

search
value

ey _ University of
\&/Southampton

Sequential Files

data file

« Tuples of a relation are sorted by their [10 ‘
primary key [20

* Tuples are then distributed among [30 ‘
blocks in that order [40

« Common to leave free space in each |50 ‘
block to allow for later insertions L60
|70
[80
| 90
[100
[110
[120

R _ University of
\&/Southampton

To Index or Not To Index?

Maintaining an index costs time (processor, disk access)
« When entries are added to the relation, index must be updated
* Index must be maintained to make good use of resources

There is a trade off between:
« Rapid access when retrieving data
« Speed of updating the database

ey _ University of
\&/Southampton

Dense Index dense |
index data file
- Sequence of blocks holding only keys 10| 10 ‘
and pointers to records 20 | {20
. . . 30
« One key/pointer pair for every record in 40 >[30 ‘
data file 0] 40
* Blocks of index are in same order as 50 \| 50 ‘
those of the data file 0 {60
« Key-pointer pair much smaller than 80 70 ‘
record]9000 Q S0
\I 90
110 100
120 %II] — ‘

ey _ University of
\&/Southampton

Dense Index dense |
index data file
- Fewer blocks than data file, fewer disk 10| {10
accesses 20| |20
30
- Keys are sorted, so can use binary 40 30
search 50 {40
« Can keep in main memory if small 50 \| >0
enough (no disk accesses) 20 360

80 70
90 \Iso
100 \|90
110

120 %llﬂo

\ .

‘?35-;@ University of
\&/Southampton

|60

« Potentially takes longer to find key than
dense index (

Sparse Index sparse |
index data file
» One key/pointer pair for every block in 10 110
data file 30 \: 20
50
« Can only be used if data file is sorted by 70 30
search key 90 40
« Uses less space than dense index 110 2

70
| 30

90
[100

110
[120

<l AL

11

Multi-level Index

 Index file may cover many blocks
« May still need many disk accesses

« Use sparse index over the first index

« Can’t be a dense index (would use the
same number of blocks as the index

being indexed)

« Can create a third level index, but in
general prefer B-trees

‘?35-;@ University of
\&/Southampton

|60

~N
o

sparse sparse
second-level first-level data file
10| ——{10| {10
110 30 |20
50 \|30
70 m
\v 90
\) >0

oo
o

O
o

[100

110

[120

<l AL

12

Notes on pointers:

* Block pointers (as used in sparse
indexes) can be smaller than record
pointers (used in dense indexes)

« Physical record pointers consist of a block
pointer and an offset

« If file is contiguous, then we can omit
pointers
« Compute offset from block size and key
position
« e.g. assuming 1kB per block and a pointer

to block with key k1, to get block with key
k3, use offset of (3-1)*1 = 2kB

kKl] J—— b1
k2
k3 b2
k4
b3
b4

‘?3335@ University of
\&/Southampton

13

Sparse vs. Dense Tradeoff

Sparse:
* Less index space per record can keep more of index in memory
« Better for insertions

Dense:
« Can tell if a record exists without accessing file
* Needed for secondary indexes

University of

Southampton

14

Duplicate Keys

Dense index approach #1

University of

dense
index data file
10| {10
10 10
S

{20
20 \I

20

30

{30 ‘
30
30 \lso
40 \Iso
20 \|40
50 \Iso ‘
60 \lso

N Ei—

Southampton

15

ey _ University of
\&/Southampton

Duplicate Keys dense |
index data file
Dense index approach #2 0] 10 ‘
« Point at the first record with a given value 20 Lo
30
- better approach? 20 10
(smaller index) 20
50
[20
60 30
[30
[30
e
50
|50
60

16

Duplicate Keys

Sparse index approach #1

 Searching for (e.g.) 20 will give
unexpected results

S

University of

outhampton

sparse
index data file
10| {10
10 10
Il N |
40 [20 I
20
5 B ‘
30
\v |30
\ 40
|50
50 ‘

|60

17

‘?35';@ University of
\&/Southampton

Duplicate Keys sparse
index data file
Sparse index approach #2 10| 10 ‘
 Index contains first new key from each 20 Lo
block 30 10 ‘
30
40 [20
= 20 ‘
[30
30
\ [30
\v 40
[50
50
|60

18

‘?3335@ University of
\&/Southampton

Duplicate Keys sparse |
index data file
Sparse index approach #2 10| 10 ‘
« Can we exclude sequences of blocks with 20 L10
repeated keys? zg 10
« Point only to first instance of each value =0 [20
20
[30
[30
[30
40
[50
50
|60

19

=4 _ University of
\&/Southampton

Deletion from Sparse Index sparse |
index data file
10 ﬂ]O ‘
30 20
i o
%0 | 40
T\ S |
70 ‘
\v | 30
\ 90 ‘
\ [100
\v 110
% [120

20

Deletion from Sparse Index

* Delete record 40

S

University of

outhampton

sparse
index data file
10| {10
30 |20
20 \|30
70 \40 ‘
90
mEE |
70
\v | 30
\ 90
\ [100
\v 110
\ [120

21

Deletion from Sparse Index

* Delete record 40

S

University of

outhampton

data file

sparse
index

10| {10
30 |20
50

20 30
90

110 20

|60

oo
o

:/g//_Z_/

O
o

[100

i

110

[120

A

22

Deletion from Sparse Index

e Delete record 30

e Delete record 30 from data file and
reorder block

« Update entry in index

sparse
index

University of

data file

10

——1 10

30

|20

50

70

90

110

oo
o

O
o

P

[100

110

[120

S

Southampton

23

Deletion from Sparse Index

e Delete record 30

e Delete record 30 from data file and
reorder block

« Update entry in index

University of

s
Southampton

sparse
index data file
10| {10
40 [20
50 \l
- I40 |
90
mEE |
70
\ | 30
\v 90
[100
110
[120

S

24

Deletion from Sparse Index

e Delete records 30 and 40
« Delete records from data file
« Update index

University of

Southampton

sparse
index data file
10| 10
30 [20
50 \l
79 |28 ‘
90
50
110 60 ‘
70
\ [80
\v 90
\v [100
\v 110
\v [120

25

‘?3335@ University of
\&/Southampton

Deletion from Sparse Index sparse |
index data file
» Delete records 30 and 40 10| 10
* Delete records from data file gg 120

« Update index 90

50
|60

110

170
[80
90
[100

110
[120

<l AL

26

Deletion from Dense Index

e Delete record 30
e Delete record from data file

« Remove entry from index and update
index

S

data file

University of

outhampton

dense

index
10| 10
20 {20
i
{40
50 \|
50

60
- {60

80

90

100

110

120

27

Deletion from Dense Index

e Delete record 30
e Delete record from data file

« Remove entry from index and update
index

dense
index

University of

data file

10

——1 10

20

—] 20

40

50

60

/70

80

90

100

110

120

Southampton

28

Insertion into Sparse Index

?3335@ University of
\&/Southampton

[100

sparse
index data file
10 —10
30 | 20
40 \‘
= | 30 ‘
90
40
|50
60 ‘
I
90 ‘

29

Insertion into Sparse Index

e Insert record 34

« Easy! We have free space in the right
block of the data file

‘?3335@ University of
\&/Southampton

sparse

index data file
10 —10
30 | 20
40 \I 30
60 |
50 | 34
40
|50
60 ‘
I
90 ‘

[100

30

Insertion into Sparse Index

e Insert record 15

« Add to data file and immediately
reorganise

« Update index

=4 _ University of
\&/Southampton

sparse
index data file
10] {10 ‘
30 | 20
40 \‘30
60 | ‘
90
40 ‘
|50
60 ‘
I
90 ‘

{100

31

Insertion into Sparse Index

e Insert record 15

« Add to data file and immediately
reorganise

« Update index

 Alternatively:
 Insert new block (chained file)
« Update index

?3335@ University of
\&/Southampton

sparse

index data file
10 10
20 |15
40 \i >0
60 ‘
50 | 30
40
|50
60 ‘
I
90 ‘

{100

32

Insertion into Sparse Index

e Insert record 25

 Block is full, so add to
overflow block

« Reorganise later...

data file

sparse index
10 10
30 | 20
40 \‘
60 I 30
90
40
|50
60
I
90

{100

University of

outhampton

33

R _ University of
\&/Southampton

Insertion into Sparse Index

sparse index data file overflow blocks
* Insert record 25 10] 110 h/ll 25 |
 Block is full, so add to 30 [20 I |
overflow block gg 30 I:I
- Reorganise later... 50 |
40
[50
60 I:I
90
[100

34

Secondary Indexes

« Unlike a primary index, does not
determine placement of records in data
file

 Location (order) of records may have
been decided by a primary index on
another field

« Secondary indexes are always dense

« Pointers are record pointers, not block
pointers

‘?3335@ University of
\&/Southampton

data file

[20

| 40

[10

| 30

[70

[50

| 60

[100

| 90

[120

[110

|30

35

Secondary Indexes

« Unlike a primary index, does not
determine placement of records in data
file

 Location (order) of records may have
been decided by a primary index on
another field

« Secondary indexes are always dense

« Pointers are record pointers, not block
pointers

dense
index

10

20

30

40

50

60

/70

80

90

100

110

120

—<<

University of

ae
Southampton

data file

20

40

10

80

/70

50

60

100

90

120

110

30

36

‘?35';@ University of
\&/Southampton

Secondary Indexes sparse
index data file
« Sparse secondary indexes make no 20| |20 ‘
sense 10 \:40
70
60 B ‘
90
70
110 50 ‘
60
[100
% 90
[120
110
[30

37

ey _ University of
\&/Southampton

Secondary Indexes dense |
first-level data file
« May have higher levels of sparse indexes 10 20 ‘
above the dense index 20 40
30 —
40 10 ‘
50
0 70 |
70
80 60
90 100
100 ™
110 120
120 110
\v 30

38

Secondary Indexes

« May have higher levels of sparse indexes
above the dense index

sparse

second-level

dense

first-level

10

H—

10

60

20

110

30

40

50

60

/70

80

90

100

110

120

—<<

University of

ae
Southampton

data file

20

40

10

80

/70

50

60

100

90

120

110

30

39

Duplicate values

« Secondary indexes need to cope with
duplicate values in the data file

S

data file

University of

outhampton

[20

10

[20

| 40

[10

[40

|30

[10

[20

10

[30

| 40

40

‘?35';@ University of
\&/Southampton

Duplicate values

index data file
Solution #1: repeated entries 10 20
10 10
]
0 20
Problems 10
>0 40
« excess disk space —
« excess search time 20 ‘
40
20
30 30
30 10
40 >0
40 10
4
0 \I 30
\v 40

41

Duplicate values

Solution #2: drop repeated keys

Problems
e variable size records in index

S

University of

outhampton

index data file
10 20
10
20 ‘
>0 40
10
2
T\ e |
30 30
10
40 >0
40 10
\I 30

42

‘?3335@ University of
\&/Southampton

Duplicate values

index data file
Solution #3: chain records with same key 10 ><IZO
20 10
30 X
Problems 40 20
 need to add fields to records I | —
« need to follow chain
|40
30
[10
|20
10
[30
| 40

43

Duplicate values

Solution #4: indirection via buckets of
pointers

Advantages

* If we have multiple secondary indexes on
a relation, we can calculate conjunctions
by taking intersections of buckets

« Don’t need to examine data file!

index

10

buckets

S

data file

University of

outhampton

20

30

40

20

10

20

40

10

40

30

10

20

10

30

40

////

44

Conventional indexes

Advantages:
« Simple
 Index is sequential file and good for scans

Disadvantages:
 Inserts expensive, and/or
« Lose sequentiality & balance

University of

Southampton

45

) University of

\&/Southampton

B+trees

B+trees

« The most widely used tree-structured indexes

« Balanced multi-way tree
* Yields consistent performance
« Sacrifices sequentiality

University of

Southampton

47

B+tree example

?3335@ University of
\&/Southampton

Root node
45
30 1201 [150] |180
/ / Non-leaf nodes
Leaf nodes
3 5 11 —> 45| | 60
v v v v v
R e
301135 120] [130
J T\
L>150 156] [179
T 7
L>180 200

48

Example non-leaf node

AN

?3335@ University of
\&/Southampton

120

150

130

keys < 120

/

120 < keys < 150

\

150 < keys < 180

keys > 180

49

Non-leaf nodes

Root node typically kept in memory
« Entrance point to index - used as frequently as any other node
« Some nodes from second level may also be kept in memory

University of

| Southampton

50

Example leaf node

from non-leaf

University of

2L
Southampton

150

156

179

— t0o next leaf

\ 4 \ 4 \ 4
to record to record to record
with with with
key 150 key 156 key 179

51

R _ University of
\&/Southampton

Leaf nodes

If the index is a primary index
« Leaf nodes are records containing data, stored in the order of the primary key
« The index provides an alternative to a sequential scan

If the index is a secondary index
« Leaf nodes contain pointers to the data records
« Data can be accessed in the sequence of the secondary key
« A secondary index can point to any sort of data file, for example one created by hashing

52

Node size

Each node is of fixed size and contains
* n keys
* n+1 pointers

@?SQ@ University of
\&/Southampton

non-leaf

| [120] [150] |180] |

leaf

1150| [156] [179] | |

53

Minimum nodes

Don’t want nodes to be too empty (efficient use of space)

Non-leaf: [(n+1)/2] pointers
Leaf: L (n+1)/2] pointers

ed University of

\&/Southampton

54

Minimum node examples (n=3)

non-leaf

leaf

minimum

120

full
A
(
120 150 180
150 156 179

150

156

‘?3335@ University of
\&/Southampton

55

B+tree rules

1. All leaves same distance from root (balanced tree)

2. Pointers in leaves point to records except for “sequence pointer”

3. Number of pointers/keys for B+tree of order n:

max max min ptrs min keys
ptrs keys to data
Non-leaf n+1 n [(n+1)/2] [(n+1)/21-1
Leaf n+1 n L (n+1)/2] L(n+1)/2]
Root n+1 n 1 1

University of

| Southampton

56

B+tree arithmetic example

First, some parameters:

 block size 4kb, of which:
b = 4000 bytes available for storage of records

« key length
k =10 bytes
« record length
r = 100 bytes (including the key)

* block pointer
p = 6 bytes

University of

| Southampton

57

Sgﬂ\iceﬁictlﬁfpton
B+tree arithmetic example

A leaf node in a primary index can accommodate Ip records, where Ip = (b-p)/r] = 39
records

A leaf node in a secondary index can accommodate Is records,
where Is = (b-p)/(k+p)] = 249 records

A non-leaf node could accommodate i entries, where
i =[(b-p)/(k+p)] = 249 records

To allow for expansion, assume initial node occupancy of u, where u = 0.6

58

R _ University of
\&/Southampton

B+tree primary index

For a primary index (the leaf nodes hold the records):

* A non-leaf node initially points to
i*u = blocks

« Each leaf initially contains
Ip*u = records

* 1 level of non-leaf nodes initially points to
(Ip*u)(i*u) = records

2 levels of non-leaf nodes initially point to
(i*u)? = blocks
(Ip*u)(i*u)? = records

R _ University of
\&/Southampton

B+tree primary index

For a primary index (the leaf nodes hold the records):

* A non-leaf node initially points to

i*u = 149 blocks
« Each leaf initially contains

Ip*u = 23 records
* 1 level of non-leaf nodes initially points to

(Ip*u)(i*u) = 3,427 records
2 levels of non-leaf nodes initially point to

(i*u)? = 22,201 blocks

(Ip*u)(i*u)? = 510,623 records

R _ University of
\&/Southampton

B+tree secondary index

For a secondary index (the leaf nodes hold record pointers):

* A non-leaf node initially points to
i*u = blocks

« A leaf node initially points at
Is*u = records

* 1 level of non-leaf nodes initially points to
(Is*u)(i*u) = records

2 levels of non-leaf nodes initially point to
(Is*u)(i*u)? = records

%EJ’@ University of
\&/Southampton

B+tree secondary index

For a secondary index (the leaf nodes hold record pointers):

* A non-leaf node initially points to

i*u = 149 blocks

« A leaf node initially points at
|s*u = 149 records

* 1 level of non-leaf nodes initially points to
(Is*u)(i*u) = 22,201 records

2 levels of non-leaf nodes initially point to
(Is*u)(i*u)? = 3,307,949 records

It is not normally necessary to go more than about three levels deep in the index

B+tree Insertion

Four cases to consider:

1.
2.
3.
4.

Space available in leaf
Leaf overflow
Non-leaf overflow

New root

ae

7

University of

Southampton

63

Case 1: insert key=32

100

30

A4

30

S

University of

outhampton

64

Case 1: insert key=32

100

30

A4

30

32

\&/

4 University of

Southampton

65

Case 2: insert key=7

100

30

30

\&/

4 University of

Southampton

66

Case 2: insert key=7

100

30

11

30

31

\&/

4 University of

Southampton

67

Case 2: insert key=7

100

30

11

A4

30

\&/

4 University of

Southampton

68

Case 3: insert key=160

100

N

120

150

180

=

—>(150

156| [179

vV

180

200

C)
\&/

University of

Southampton

69

Case 3: insert key=160

N

100

120

150

180

=

—>(150

156

vV

>1160

179

180

200

ae

7

University of

Southampton

70

Case 3: insert key=160

100

N

120

150

=

—>(150

156

180

vV

160

179

180

200

\&/

4 University of

Southampton

71

Case 3: insert key=160

100 |160

N T

120

150

=

—>(150

156

180

vV

160

179

O

>1180

200

\&/

4 University of

Southampton

72

Case 4: insert 45

10]1]120(]30
1 2 3
\Z \Z \Z
> 10]12
\Z \Z
I
> 20| | 25

30

40

S

University of

outhampton

73

Case 4: insert 45

10]1]120(]30
1 2 3
\Z \Z \Z
> 10]12
\Z \Z
I
> 20| | 25

30

40

45

University of

Southampton

74

Case 4: insert 45

10]1]20 40
1 2 3
2
> 10 [12
2
I

> 20| [25 u
- \

30|32
vV \
\
40| | 45

University of

Southampton

75

Case 4: insert 45

30
10]1]20 40
1 2 3
2
> 10 [12
2
I
> 20| [25 u
- \
30|32
vV \
\
40| | 45

University of

| Southampton

76

B+tree Deletion

Four cases to consider:

1.
2.
3.
4.

Simple case
Coalesce with sibling
Re-distribute keys

Cases 2. or 3. at non-leaf

ae

7

University of

Southampton

77

Case 2: delete key=50 (n=4)

/

/

10

4011100

20

30

S

University of

outhampton

/

50

78

Case 2: delete key=50 (n=4)

/

/

10

4011100

20

30

40

S

University of

outhampton

\

o /

79

Case 2: delete key=50 (n=4)

/

/

10

100

20

30

40

\&/

4 University of

Southampton

A4

80

Case 4: delete key=37 (n=4)

\

e

25

10

20

A2

10

14

30

40

\

26

20

A2

30

University of

Southampton

40

81

Case 4: delete key=37 (n=4)

e

25

10

20

A2

10

14

25

20

University of

Southampton

>1 40

82

Case 4: delete key=37 (n=4)

e

25

10

20

A2

10

14

25

20

S

>1 40

University of

outhampton

83

88 University of

\&/Southampton

Case 4: delete key=37 (n=4)

25

T

10]1]120(]25][40

84

88 University of

\&/Southampton

Case 4: delete key=37 (n=4)

new root

10][20]]25(]40
1 3 >25][26(]30
10|14

A2

85

B+tree deletions in practice

Often, coalescing is not implemented
« Too hard and not worth it!

e

7

University of

Southampton

86

B-trees versus static indexed sequential files

B-trees consume more space

« Blocks are not contiguous
« Fewer disk accesses for static indexes, even allowing for reorganisation

Concurrency control is harder in B-trees
but

DBA does not know:
« when to reorganise
« how full to load pages of new index

S

University of

outhampton

87

4 University of

\&/Southampton

Hashing

Hashing

Main memory hash table
« Hash function h() takes a key and computes an integer value
« Value is used to select a bucket from a bucket array
« Bucket array contains linked lists of records

Secondary storage hash table
« Stores many more records than a main memory hash table
« Bucket array consists of disk blocks

S

University of

outhampton

89

R _ University of
\&/Southampton

Hashing approach #1

« Hash function calculates block pointer buckets
directly, or as offset from first block

« Requires bucket blocks to be in fixed,
consecutive locations

A4

key — h(key)

90

Hashing approach #?2

« Hash function calculates offset in array
of block pointers (directory)

« Used for “secondary” search keys

C)
\&/

directory buckets

key — h(key) —

[T

University of

Southampton

91

R _ University of
\&/Southampton

Example hash function

Key = ‘x1 x2 ... xn" (n byte character string), b buckets

h: add x1 + x2 + xn, compute sum modulo b

Not a particularly good function

Good hash function has the same expected number of keys per bucket for each bucket

92

Buckets

Do we keep keys sorted?

Yes, if CPU time is critical and inserts/deletes are relatively infrequent

ae

7

University of

Southampton

93

Hashing example

Two records per bucket

—l

N

w

University of

Southampton

94

Hashing example

Insert a, b, c, d
 h(a) =1
e h(b) =2
* h(c) =1
*h(d=0

—l

N

w

University of

Southampton

95

Hashing example: Overflow

Insert e
e h(e) =1

S

University of

outhampton

—l

N

W

96

‘?35';@ University of
\&/Southampton

Hashing example: Deletion

Delete e

—l

N

N O

w

97

Hashing example: Deletion

Delete e

S

University of

outhampton

—l

N

w

98

Hashing example: Deletion

Delete f

(move g up)

S

University of

outhampton

—l

N

w

99

Hashing example: Deletion

Delete f

(move g up)

S

University of

outhampton

—l

N

w

Hashing example: Deletion

Delete f

(move g up)

S

University of

outhampton

—l

N

w

Hashing example: Deletion

Delete c

(move d from overflow block)

S

University of

outhampton

—l

N

w

Hashing example: Deletion

Delete c

(move d from overflow block)

—l

o

N

w

University of

Southampton

Rule of thumb:

Space utilisation should be between 50% and 80%

Utilisation = #keys used / total #keys that fit

If < 50%, wasting space

If > 80%, overflows significant

Depends on how good hash function is and on #keys/bucket

sle
\&/

University of

Southampton

How do we cope with growth?

Overflows and reorganizations

Dynamic hashing
« Extensible
* Linear

e

7

University of

Southampton

Extensible hashing

Combines two ideas:

1. Use i of b bits output by hash
function, where i grows over time

h(k) —»

ae

7

University of

Southampton

v

Extensible hashing

Combines two ideas:

1. Use i of b bits output by hash
function, where i grows over time

2. Use a directory

C)
\&/

directory buckets

h(l)[i] -» —

[T

University of

Southampton

Example

h(k) gives 4 bits
2 keys/bucket

0001

1001

1100

University of

Southampton

Example

Insert 1010
e Bucket overfull

0001

1001

1100

S

University of

outhampton

Example

Insert 1010
« Bucket overfull
« Extend (double) directory
 Split bucket

i=2 0001

00

o1 oo
1010

11

1100

University of

| Southampton

Example

Insert 0111

=2 0001 |
00 |
?g) | 1001 |
- | 1010 |
\l 1100 |

I |

S

University of

outhampton

Example

Insert 0111

=2 0001 |
00 o111 |
?g) | 1001 |
- | 1010 |
\l 1100 |

I |

S

University of

outhampton

Example
Insert 0000

=2 0001 |
00 0111 |
?g) | 1001 |
- | 1010 |
\l 1100 |

I |

S

University of

outhampton

Example
Insert 0000

| o000 |

| ooo1 |

=2 o111 |
00 |
?; | 1001 |
- | 1010 |
\l 1100 |

I |

University of

Southampton

Example
Insert 0000

| o000 |

0001 |

i=2 [o111 |
00 " 1 |
?; | 1001 |
- | 1010 |
\l 1100 |

I |

University of

Southampton

Example

Insert 1001

| o000 |
0001 |
i=2 [o111 |
00 /I |
01
10
11 \l
1001 |
| 1010 |
1100 |
I I

S

University of

outhampton

Example

Insert 1001

| o000 |

0001 |

i=2 [o111 |
00 /I |
?2) | 1001 |
- | 1001 |
1010 |

I I

1100 |

I I

S

University of

outhampton

Example

Insert 1001

0000

0001

0111

1001

1001

1010

1100

University of

| Southampton

Extensible hashing: deletion

« No merging of blocks
« Merge blocks and cut directory if possible

* (Reverse insert procedure)

88 University of

7

Southampton

Overflow chains

Example: many records with duplicate
keys

* Insert 1100

1101

1101

University of

Southampton

Overflow chains

Example: many records with duplicate
keys

* Insert 1100

i=2

00

01

10

11

s(Je

7

University of

Southampton

Overflow chains

Example: many records with duplicate
keys

* Insert 1100

« Add overflow block

=2

ed University of

\&/Southampton

00

\

01

10

11

1101

vl

1101

Summary

Pro
« Can handle growing files
« with less wasted space
« with no full reorganizations

Con
* Indirection
* not bad if directory in memory
* Directory doubles in size
* now it fits in memory, now it doesn’t
« suddenly increase in disk accesses!

University of

Southampton

ed University of

\&/Southampton

Linear hashing

Another dynamic hashing scheme
Combines two ideas

1. Use i least significant bits of hash,
where i grows over time

N
v

h(k) > |0]O|T|T[T1[O[O]f]1

Linear hashing

Another dynamic hashing scheme

Combines two ideas

1.

Use i least significant bits of hash,
where i grows over time

Hash file grows incrementally and
linearly

(unlike extensible hash file, which
periodically doubles)

h(k) —»

N

C)
\&/

University of

Southampton

v

Linear hashing

Another dynamic hashing scheme
Combines two ideas

1. Use i least significant bits of hash,
where i grows over time

2. Hash file grows incrementally and
linearly
(unlike extensible hash file, which
periodically doubles)

Lookup rule:

if h(k)[i] < m (maximum bucket index)
then look at bucket h(k)[i]
else look at bucket h(k)[i] - 27

h(k) —»

N

e
\&/

University of

Southampton

v

Example: b=4 bits, i=1, 2 keys/bucket

m = max used bucket = 1

S

University of

outhampton

%EJ’@ University of
\&/Southampton

Example: b=4 bits, i=2, 2 keys/bucket

| oooo || o101 |
| 1010 || 1111 |

00 01
10 11

future growth buckets

m = max used bucket = 01

ed University of

\&/Southampton

Example: b=4 bits, i=2, 2 keys/bucket

I 2328 H ?1?1 H 1210 I future growth buckets

00 01 10
10 11

m = max used bucket =10

‘?3335@ University of
\&/Southampton

Example: b=4 bits, i=2, 2 keys/bucket

I 0101 I insert 0101

I - H ?1?1 H 1210 I future growth buckets

00 01 10
11

m = max used bucket =10

ae

5

Example: b=4 bits, i=2, 2 keys/bucket

| oooo || o101 || 1010 || 71111 |
I |L_oto1 || | | |

00 01 10 11
'I'I_

future growth buckets

m = max used bucket =11

University of

Southampton

Example: further growth

| oooo || o101 || 1010 || 1111
I |L_otor J| | 1

00 01 10 11

m = max used bucket =11

future growth buckets

University of

Southampton

@53’@ University of
\&/Southampton

Example: i=3

| oooo || o101 || 1010 || 1111 |
I |L_o10o1 || | 1 |

000 001 010 011
100 101 110 111

m = max used bucket =11

Example: i=3

1111

| oooo || o101 || 1010
I |L_o10o1 ||

000 001 010
166 101 110

m = max used bucket = 100

011
111

|
| |
1

00

University of

Southampton

| oooo || e+e+ || 1010 || 1111 || || o101
I I | | 1 | 1 | L_oio1
000 001 010 011 100 101

+o+ 110 111

m = max used bucket = 101

University of

Southampton

Example: i=3

| 0000

1111

|| 1010
| 1

000 001 010
110

m = max used bucket = 101

011
111

|
| |
1

00

S

University of

outhampton

When do we expand file?

Keep track of utilisation
U = #used slots / total #slots

If U > threshold, then increase m (and maybe i)

ae

7

University of

Southampton

Linear Hashing

Pro
« Can handle growing files
« with less wasted space
« with no full reorganizations
* No indirection like extensible hashing

Con
e Can still have overflow chains

University of

| Southampton

m{ University of

Southampton

\&/

Indexing versus Hashing

Indexing vs Hashing

Hashing good for probes given a key:

SELECT ...
FROM R
WHERE R.A = 5

ed University of

\&/Southampton

Indexing vs Hashing

Indexing (Including B-trees) good for range searches:

SELECT ...
FROM R
WHERE R.A > 5

ed University of

\&/Southampton

®d University of

Southampton

N,

Further Reading

Further Reading

« Chapter 14 of Garcia-Molina et al
« Sections 14.1-14.3

* Next lecture: Multi-key Indexing
» Sections 14.4-14.7

ae

7

University of

Southampton

®d University of

Southampton

\&/

Next Lecture:
Multidimensional Access Structures

