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Web Services as state machines
Consider a hypothetical online bookseller: Orinoco Books

When we create an order, the order may be in one of a number of discrete states:
• Open: we can add or remove items to our order

• Paid: we have successfully sent payment to Orinoco, and can no longer change our order

• Shipping: Orinoco is preparing and dispatching our order

• Delivered: we have received our order

The order moves between states in response to our interactions with Orinoco
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UML Statecharts: states and transitions
Common graphical notation for describing state machines

• Object-oriented extension to Harel’s statechart

• (you’ll need this for your coursework!)

Tip: label states with nouns or adjectives and transitions with verbs or verb phrases

door 
open

door 
closed

close door

states

transitions between states

open door
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UML Statecharts: pseudostates
Two distinguished pseudostates:

• Initial state

• Final state

Choice pseudostate:

[value <= balance]

[value > balance]

guards
(used to choose which path to take)



6

Orinoco Workflow
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Revisiting the 
Richardson Maturity Model
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Richardson Maturity Model

Hypermedia

HTTP

URI
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Richardson Level 1
Multiple URIs used for resources

Key resource type from the workflow is an order
• http://orinoco.com/order/{order_id}
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Richardson Level 2
We have different URIs for each order (resource)

How do we interact with the orders?
• create a new order

• change order (add/remove items)

• cancel an order

• checkout and payment (submit order)

• check order status

Use appropriate HTTP methods!
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Create an order
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Create an order
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Can use either PUT or POST:

PUT to a new URI 
• new URI: http://orinoco.com/order/{order_id}

• client chooses order id

POST to an existing URI 
• existing URI: http://orinoco.com/order/

• server chooses order id
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PUT to a new URI

PUT /order/1234 HTTP/1.1
Host: orinoco.com

Content-Type: application/xml
Content-Length: 107

<order xmlns=“http://schema.orinoco.com/order”>
<items>

</items>
</order>

HTTP/1.1 201 Created
Date: Tue, 29 Oct 2019 17:10:00 GMT

Content-Length: 0
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POST to an existing URI

POST /order/ HTTP/1.1
Host: orinoco.com

Content-Type: application/xml
Content-Length: 107

<order xmlns=“http://schema.orinoco.com/order”>
<items>

</items>
</order>

HTTP/1.1 201 Created
Location: /order/1234

Date: Tue, 29 Oct 2019 17:10:00 GMT
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POST to an existing URI
POST /order/ HTTP/1.1
Host: orinoco.com
Content-Type: application/xml
Content-Length: 107

<order xmlns=“http://schema.orinoco.com/order”>
<items>
</items>

</order>

HTTP/1.1 201 Created
Content-Location: /order/1234

Date: Tue, 29 Oct 2019 17:10:00 GMT

<order xmlns=“http://schema.orinoco.com/order”>
<items>
</items>

</order>
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Change order
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PUT to an existing URI

PUT /order/1234 HTTP/1.1
Host: orinoco.com

Content-Type: application/xml
Content-Length: 134

<order xmlns=“http://schema.orinoco.com/order”>
<items>

<item quantity=“1” isbn=“1234567890”/>
</items>

</order>

HTTP/1.1 200 OK
Date: Tue, 29 Oct 2019 17:15:00 GMT
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Conditional PUT

PUT /order/1234 HTTP/1.1
Host: orinoco.com
Content-Type: application/xml
Content-Length: 134
If-Unmodified-Since: Tue, 29 Oct 2019 17:15:00 GMT

<order xmlns=“http://schema.orinoco.com/order”>
<items>
<item quantity=“1” isbn=“1234567890”/>

</items>
</order>

HTTP/1.1 412 Precondition Failed
Date: Tue, 29 Oct 2019 17:20:00 GMT
Content-Length: 0
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Cancel an order
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Cancel an order
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Use DELETE

DELETE is idempotent
• Repeated DELETEs have the same effect as a single DELETE

• Status codes may change (e.g. 404 for subsequent DELETEs)
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DELETE

DELETE /order/1234 HTTP/1.1
Host: orinoco.com

HTTP/1.1 204 No Content
Content-Length: 0

Date: Tue, 29 Oct 2019 17:25:00 GMT
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DELETE

DELETE /order/1234 HTTP/1.1
Host: orinoco.com

HTTP/1.1 404 Not Found
Content-Length: 0

Date: Tue, 29 Oct 2019 17:25:00 GMT
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DELETE

DELETE /order/1234 HTTP/1.1
Host: orinoco.com

HTTP/1.1 410 Gone
Content-Length: 0

Date: Tue, 29 Oct 2019 17:25:00 GMT
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Payment
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Richardson Level Three
CRUD isn’t everything!

• Limited application model

• In our scenario, payment doesn’t fit cleanly into the CRUD model

• Encourages tight coupling through URI templates

• Simple pattern

Use hypertext links to indicate protocols
• What are the next steps that you can take?

• What are the next resources?
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Where are the links?
<order xmlns=“http://schema.orinoco.com/order”>
<items>

<item quantity=“1” isbn=“1234567890”/>
</items>
<status>open</status>

</order>

What can you do next?
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Media Types
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application/xml doesn’t have specific link semantics

Can adopt standard hypermedia format (HTML, Atom, etc)
• Widely understood by software agents

• Needs to be adapted to domain

Can create domain-specific format that supports application
• Direct supports domain

• Maintains visibility of messages at the protocol level

• Not widely understood

Use link types to define protocols
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text/html

Use OPTIONS to determine the right HTTP method to use with links
• Allow: header in response lists allowed methods (for payment, PUT?)

Need to define link types for use with rel: microformats, RDF, etc

<html xmlns="http://www.w3.org/1999/xhtml”>
<body>
<div class="order”>
<ul class="items”>
<li class="item”>
<p class=”isbn">1234567890</p>
<p class="quantity">1</p>

</li>
</ul>
<a href="https://orinoco.com/payment/1234” rel="payment">payment</a> 

</div>
</body>

</html>
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application/vnd.orinoco+xml

Proprietary (vendor-specific) media type
• Uses POX for business data

• Uses (e.g.) Atom link elements for hypermedia control

<order xmlns=“http://schema.orinoco.com/order”>
<items>
<item quantity=“1” isbn=“1234567890”/>

</items>
<link href=“https://orinoco.com/payment/1234” rel=“payment”/>
<status>open</status>

</order>
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Link: header

GET /order/1234 HTTP/1.1
Host: orinoco.com

HTTP/1.1 200 OK
Content-Type: application/vnd.orinoco+xml

Link: <https://orinoco.com/payment/1234>; rel="payment"

<order xmlns=“http://schema.orinoco.com/order”>
<items>
<item quantity=“1” isbn=“1234567890”/>

</items>
</order>
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Check order status
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Check order status
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Use GET
• GET is idempotent

• GET has no side-effects!



33

GET

GET /order/1234 HTTP/1.1
Host: orinoco.com

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: 107
Date: Tue, 30 Oct 2018 16:30:00 GMT

<order xmlns=“http://schema.orinoco.com/order”>
<items>
</items>
<status>open</status>

</order>
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GET

GET /order/9999 HTTP/1.1
Host: orinoco.com

HTTP/1.1 404 Not Found
Content-Length: 0

Date: Tue, 30 Oct 2018 16:30:00 GMT
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Collections and Elements
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Extra conventions for talking about collections of elements
• An order can be considered to be a collection

• An item in the order is an element of that collection

Some consensus of semantics of HTTP methods for these

In our case: 
• http://orinoco.com/order/ is a collection

• http://orinoco.com/order/{order_id} is an element
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RESTful Methods for Collections
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Method Behaviour

GET List the members of the collection (list of URIs)

PUT Replace the entire collection with another collection

POST Create a new member in the collection and automatically assign
it a URI

DELETE Delete the entire collection
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RESTful Methods for Collection Elements
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Method Behaviour

GET Retrieve a representation of the specified element

PUT Replace the specified element of the collection, or if it doesn’t 
exist create it

POST Treat the specified member as a collection and create a new 
element in it

DELETE Delete the specified member of the collection
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Orinoco Workflow

open

shipping

paid

delivered

GET /order/{order_id}
200 OK

PUT /order/{order_id}
200 OK

PUT /payment/{order_id}

deliver
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POST /order
201 Created

201 Created

400 Bad RequestDELETE /order/{order_id}
204 No Content



Further Reading
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Further Reading
REST in Practice tutorial slides

• http://www.slideshare.net/guilhermecaelum/rest-in-practice

Webber et al (2010) REST in Practice. Sebastopol, CA: O’Reilly Media



Documenting REST
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Documentation
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What are the key aspects of a RESTful interface?

How should we document each of these?

What does a developer need to know to use our service?



Identification
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URIs
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URI Parameters



Interaction



47

Methods
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Status Codes
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Headers
Mostly for Authorisation

• OAuth 2.0, etc

Consider how the various Accept-*: 
headers might be used.



Representation
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Representation
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Examples
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HATEOAS
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Listings



OpenAPI
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OpenAPI
Originated with Swagger tool for designing RESTful APIs

Represents API descriptions in JSON or YAML (Yet Another Markup Language)
• We’ll concentrate on the YAML serialization
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OpenAPI metadata
OpenAPI description starts with:

• Version number of OpenAPI in use

• Simple metadata about the service in the info: block

openapi: 3.0.0
info:
version: 1.0.0
title: Orinoco API
description: The API for the Orinoco online bookseller
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Servers
API endpoints are defined relative to a base URI

• Defined in OpenAPI using the servers: block

servers:
- url: https://orinoco.com
description: Live server

_ url: https://test.orinoco.com
description: Test server (uses dummy data)
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Components
components: block used to define repeatedly-used information

• Most often used to define format of message bodies

components:
schemas:
order:
type: object
properties:
items:
type: array
item:
type: string

status:
type: string
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Paths
Lists available paths on the server

• e.g. https://orinoco.com/order/1234

For each path, lists:
• The methods which can be used on that path

• The content of any request body which should accompany the method (for PUT, POST)

• The responses which may be received from the method (including response bodies)
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Path Example
paths:
/order{order_id}:

get:
description: Obtain information about an order
parameters:
- name: order_id
in: path

required: true
schema:
type: string
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Path Example
paths:
/order{order_id}:

get:
...
responses:
‘200’:
description: Successfully returned an order

content:
application/xml:
schema: 
$ref: ‘#/components/schemas/order’
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Summary
Documentation should cover all the bases of the web architecture

• Identification – parameterised URIs

• Interaction – HTTP methods, status codes and headers

• Representation – formats for request and response, with examples

Listings of all of the above
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RESTful API Examples
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Twitter
https://developer.twitter.com/en/docs/api-reference-index

Paypal
https://developer.paypal.com/docs/api/payments/

Imgur
https://apidocs.imgur.com

Wordpress
https://developer.wordpress.org/rest-api/
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Tools and Further Reading
Swagger API development tool

https://swagger.io/

Overview of OpenAPI
https://swagger.io/docs/specification/about/

OpenAPI Specification
https://github.com/OAI/OpenAPI-Specification



Next Lecture: Trailblazers


