


Content Negotiation, 
Conditional Requests and Cookies
COMP3220 Web Infrastructure

Dr Nicholas Gibbins – nmg@ecs.soton.ac.uk



Content Negotiation



4

HTTP content negotiation

4

HTTP can deliver different representations of a resource based on client preferences

Two styles of content negotiation:
• Server-driven (where the server makes the final choice of representation)

• Client-driven (where the client makes the final choice of representation)

Three areas for negotiation
• Media type (Accept: and Content-Type:)

• Language (Accept-Language: and Content-Language:)

• Encoding (Accept-Encoding: and Content-Encoding:)



5

Server-driven content negotiation
1. Client tells the server what it is able to accept in a request header

2. Server chooses an appropriate representation to return to the client

3. Server tells the client what its choice was in a response header

Client request headers all have the same structure:

headername: choice1; q=quality1, choice2; q=quality2, choice3; q=quality3 ...

The header name and the values for choicen all depend on what is being negotiated

The quality values qualityn are numeric values between 0.0 and 1.0



6

Media type negotiation
Client request header: Accept:

Server response header: Content-Type:

Choice values are Internet Media Types: 
• text/plain
• text/html
• application/pdf
• image/jpeg
• image/png
• image/svg+xml
• audio/mpeg
• ...



7

Media type negotiation

GET / HTTP/1.1
Host: example.org
Accept: text/html; q=1.0, text/plain; q=0.5

HTTP/1.1 200 OK
Content-Type: text/html

<html>
<head>
<title>Example, Inc. Homepage</title>

</head>
<body><h1>Welcome to Example!</h1>...</body>

</html>



8

Language negotiation
Client request header: Accept-Language:

Server response header: Content-Language:

Choice values are typically ISO 639 language codes:
• en for English

• de for German

• zh for Chinese

Convention for indicating regional dialects by adding ISO 3166-1 country codes:
• en-GB for British English

• de-CH for Swiss German

Phillips, A. and Davis, M. (2009) Tags for identifying languages. RFC5646/BCP47. Available at: https://tools.ietf.org/html/bcp47



9

Language negotiation

GET / HTTP/1.1
Host: example.org
Accept-Language: de; q=1.0, en-gb; q=0.5

HTTP/1.1 200 OK
Content-Type: text/html
Content-Language: de

<html>
<head>
<title>Example, Inc. Homepage</title>

</head>
<body><h1>Willkommen zu Example!</h1></body>

</html>



10

Encoding negotiation
Client request header: Accept-Encoding:

Server response header: Content-Encoding:

Typically used to specify whether the body of a HTTP message is compressed

Possible choice values:
• br (Brotli compressed data format)

• deflate (zlib compression)

• gzip (LZ77 compression – the most common choice)

• compress (LZW compression)

• identity (no encoding)



11

The Vary: header
Origin servers can indicate what parts of the request message (aside from the method, 
Host: header, and request target) they'll use to select an appropriate representation

GET / HTTP/1.1
Host: example.org

HTTP/1.1 200 OK
Content-Type: text/html
Vary: accept, accept-language

...



12

The Content-Location: header
Used to indicate a direct URI to use to access a content-negotiated resource

GET /logo HTTP/1.1
Host: example.org
Accept: image/png; q=1.0, image/gif; q=1.0, image/jpeg; q=0.8

HTTP/1.1 200 OK
Content-Type: image/gif
Content-Location: /logo.gif

...



13

Client-driven content negotiation
1. Client requests a resource representation

2. Server returns 300 Multiple Choices with a list of URIs for alternative 
representations in the body

3. Client requests a representation of one of those URIs

No standard for how the server lists the alternative representations!



14

Client-driven content negotiation

14

GET / HTTP/1.1
Host: example.org

HTTP/1.1 300 Multiple Choices
Content-Type: application/json

[{"type": "image/jpeg",
"uri": "http://example.org/me.jpg"},
{"type": "image/png",
"uri": "http://example.org/me.png"}]

GET / HTTP/1.1
Host: example.org



15

How not to negotiate content

GET / HTTP/1.1
Host: example.org
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; 
rv:80.0) Gecko/20100101 Firefox/80.0 

You're a Firefox browser, so I'd 
better send you the Firefox 

version of that resource



16

How not to negotiate content (Browser Wars, Part II)



17

Client Hints
Content negotiation using the User-Agent: header is not considered good practice

Accept: is a very crude basis for content negotiation

Client Hints is a proposed HTTP extension that allows browsers to state their 
capabilities and preferences

• Device memory

• Downlink speed

• Viewport width

• Device pixel ratio

• Reduced data usage

Grigorik, I. and Weiss, Y. (2020) HTTP Client Hints. Internet Draft. Available online at: https://httpwg.org/http-extensions/client-hints.html



18

Exercise: Content Negotiation



19

Exercise: Content Negotiation
curl –H “[header]” [uri]

• Generates a HTTP request including the specified header

Use curl to study the following requests:

curl –v https://www.debian.org/ 
curl –v –H “Accept-Language: de” https://www.debian.org/
curl –v –H “Accept-Language: fi” https://www.debian.org/



Conditional Requests



21

The Lost Update problem
If two or more clients are modifying a resource at the same time, 
how do we avoid lost updates?

time

Client 1 GETs 
representation 
of resource X

Client 2 GETs 
representation 
of resource X

Client 1 PUTs new 
representation

Client 2 PUTs new 
representation

client 1 client 2



22

Conditional requests
Some HTTP methods are unsafe; they alter the state of resources

Lost updates occur only when carrying out unsafe methods
• Avoid by checking to see whether the state of a resource (i.e. its representation) has 

changed between the GET and the PUT

Can also be used to avoid unnecessary safe methods

Comparison of representations in terms of validators that describe resource versions
• Strong validation: checks whether representations are byte-for-byte identical

• Weak validation: checks whether representations contain “the same content”



23

Entity tags
Entity tags are identifiers for resource versions (can be weak or strong)

Supplied by the server using the ETag: header:
• ETag: "38be-5af769c088685" - a strong entity tag 

• ETag: W/"0023" - a weak entity tag (denoted by the “W/”)

• ETag: * - an entity tag matching any resource

If-Match: <etag>, <etag>, ...

• Only carry out the operation if the resource entity tag matches one of those listed

• If no matches, return 412 Precondition Failed

If-None-Match: <etag>, <etag>, ...

• Only carry out the operation if the resource entity tag does not match any of those listed

• If matches, return 304 Not Modified for safe methods, or 412 Precondition Failed for 
unsafe methods 



24

GET / HTTP/1.1
Host: www.example.com

HTTP/1.1 200 OK
Content-Type: text/html
ETag: "39d5-5943f8fdc2607"

<representation>

PUT / HTTP/1.1
Host: www.example.com
If-Match: "39d5-5943f8fdc2607"

<new representation>

HTTP/1.1 200 OK
Content-Type: text/html

ETag: "47cf-b922e4f191138"



25

GET / HTTP/1.1
Host: www.example.com

HTTP/1.1 200 OK
Content-Type: text/html
ETag: "39d5-5943f8fdc2607"

<representation>

PUT / HTTP/1.1
Host: www.example.com
If-Match: "39d5-5943f8fdc2607"

<new representation>

HTTP/1.1 412 Precondition Failed
Content-Type: text/html
ETag: "4b4f-77a6c3ab117a2"

http://www.example.com/ is modified – new ETag is 4b4f-77a6c3ab117a2



26

GET / HTTP/1.1
Host: www.example.com

If-None-Match: "4b4f-77a6c3ab117a2"

HTTP/1.1 304 Not Modified



27

Timestamps
Supplied by the server using the Last-Modified: header:

• Last-Modified: Fri, 18 Sep 2020 17:25:23 GMT

If-Modified-Since: <dayname>, <day> <month> <year> <hour>:<min>:<sec> GMT

• Only carry out the operation if the resource timestamp is after the given date

• Return 304 Not Modified if before the given date

If-Unmodified-Since: <dayname>, <day> <month> <year> <hour>:<min>:<sec> GMT

• Only carry out the operation if the resource timestamp is not after the given date

• Return 412 Precondition Failed if after the given date



28

GET / HTTP/1.1
Host: www.example.com

HTTP/1.1 200 OK
Content-Type: text/html
Last-Modified: Mon, 14 Sep 2020 12:23:01 GMT

<representation>

PUT / HTTP/1.1
Host: www.example.com
If-Unmodified-Since: Mon, 14 Sep 2020 12:23:01 GMT

<new representation>

HTTP/1.1 412 Precondition Failed
Content-Type: text/html
Last-Modified: Tue, 15 Sep 2020 14:34:07 GMT

http://www.example.com/ is modified on Tue, 15 Sep 2020 14:34:07 GMT



29

GET / HTTP/1.1
Host: www.example.com

If-Modified-Since: Tue, 15 Sep 2020 14:34:07 GMT

HTTP/1.1 304 Not Modified



30

Further reading
Fielding, R. and Reschke, J. (2014) Hypertext Transfer Protocol (HTTP/1.1): Conditional 
Requests. RFC7232.

https://tools.ietf.org/html/rfc7232



Cookies



32

The infamous cookie
Intended as a way for web servers to persist state across HTTP requests

• (but isn't HTTP supposed to be stateless?)

Invented in 1994 by Lou Montulli of Netscape
• (also the inventor of the <blink> tag) 

Patented in 1995
• (Netscape Communications Corp. vs ValueClick Inc.)

Ostensibly deprecated in favour of HTML5 local storage ... and yet it still lives!

Barth, A. (2011) HTTP State Management Mechanism. RFC6265. Available online at: https://tools.ietf.org/html/rfc6265



33

Cookies

33

GET / HTTP/1.1
Host: www.example.org

HTTP/1.1 200 OK
Content-Type: text/html
Set-Cookie: foo=23
Set-Cookie: bar=qux

...

GET / HTTP/1.1
Host: www.example.org
Cookie: foo=23; bar=qux



34

Lifetime
Cookies can either be session cookies or permanent cookies

• Session cookies expire "when the current session ends" (when the browser is closed?)

• Permanent cookies have a specified expiry time

Set-Cookie: foo=23; Expires=Fri, 23 Oct 2020 10:05:34 GMT

• Indicates that the cookie should expire after the given date

Set-Cookie: foo=23; Max-Age=21600

• Indicates that the cookie should expire after Max-Age seconds



35

Access restriction
Set-Cookie: foo=23; Secure

• Indicates that the cookie should only ever be sent over HTTPS

Set-Cookie: foo=23; HttpOnly

• Indicates that the cookie should not be visible from within the Document.cookie interface



36

Scope
Set-Cookie: foo=23; Domain=example.org

• Cookie should only be sent to example.org or its subdomains (i.e. foo.example.org)

• Defaults to the origin server that set the cookie (excluding subdomains)

Set-Cookie: foo=23; Path=/bar

• Cookie should only be sent if value of Path is in the requested URI

Set-Cookie: foo=23; SameSite=Strict

• Strict: only send cookie to the same site that originated it

• Lax: cookie is withheld for cross-site subrequests (i.e. images) but sent when user follows a 
link (typical browser default setting)

• None: no restrictions on cross-site requests



37

Privacy considerations
Cookies can be used to track users across websites

Relies on websites embedding resources (typically images) from third parties
• When a user fetches the third party resource, it sets a cookie

• Cookie may be read when the user fetches a resource from the third party in future

Relies on default browser cookie scope of SameSite=None



38

GET /page.html

200 OK

GET /foo.gif

200 OK
Set-Cookie: id=12345

GET /doc.html

200 OK

GET /bar.gif
Cookie: id=12345

200 OK

site1.org

page.html

foo.gif

bigbrother.com foo.gif

site2.org

doc.html

bar.gif

bigbrother.com bar.gif



39

Privacy considerations
High profile UK case in 2010 
(discovered by a Southampton graduate!)

• NHS put Facebook "like" buttons on their 
webpages (loaded from Facebook's CDN)

• When a user visited an NHS webpage, 
Facebook set a cookie

• If the user visited a different page with a 
like button, Facebook could read the 
cookie and correlate those visits

• If they were logged into Facebook, 
Facebook now knew what their users are 
searching the NHS for

https://mmt.me.uk/blog/2010/11/21/nhs-and-tracking/



Next Lecture: HTML


