

Parallel Databases
COMP3211 Advanced Databases

Dr Nicholas Gibbins - nmg@ecs.soton.ac.uk
2020-2021

3

Overview

3

• The I/O bottleneck

• Parallel architectures

• Parallel query processing
• Inter-operator parallelism

• Intra-operator parallelism

• Bushy parallelism

• Concurrency control

• Reliability

The I/O Bottleneck

5

The Memory Hierarchy, Revisited

5

Type Capacity Latency

Registers 101 bytes 1 cycle

L1 104 bytes <5 cycles

L2 105 bytes 5-10 cycles

RAM 109-1010 bytes 20-30 cycles (10-8 s)

Hard Disk 1011-1012 bytes 106 cycles (10-3 s)

6

The I/O Bottleneck

6

Access time to secondary storage (hard disks) dominates performance of DBMSes

Two approaches to addressing this:
• Main memory databases (expensive!)

• Parallel databases (cheaper!)

Increase I/O bandwidth by spreading data across a number of disks

7

Definitions

7

Parallelism
• An arrangement or state that permits several operations or tasks to be performed

simultaneously rather than consecutively

Parallel Databases
• have the ability to split:

• processing of data

• access to data

• across multiple processors, multiple disks

8

Why Parallel Databases?

8

• Hardware trends

• Reduced elapsed time for queries

• Increased transaction throughput

• Increased scalability

• Better price/performance

• Improved application availability

• Access to more data

• in short, for better performance

Parallel Architectures

10

Shared Memory Architecture
• Tightly coupled

• Symmetric Multiprocessor (SMP)

P = processor

M = memory (for buffer pool)

10

P

Global Memory

PP

11

Software – Shared Memory
• Less complex database software

• Limited scalability

• Single buffer

• Single database storage

11

P

Global Memory

PP

12

Shared Disc Architecture
• Loosely coupled

• Distributed Memory

S = switch

12

PPP

MMM

S

13

Software – Shared Disc
• Avoids memory bottleneck

• Same page may be in more than one
buffer at once – can lead to incoherence

• Needs global locking mechanism

• Single logical database storage

• Each processor has its own database
buffer

13

PPP

MMM

S

14

Shared Nothing Architecture
• Massively Parallel

• Loosely Coupled

• High Speed Interconnect
(between processors)

14

PPP

MMM

15

Software - Shared Nothing
• Each processor owns part of the data

• Each processor has its own database
buffer

• One page is only in one local buffer – no
buffer incoherence

• Needs distributed deadlock detection

• Needs multiphase commit protocol

• Needs to break SQL requests into
multiple sub-requests

15

PPP

MMM

16

Hardware vs. Software Architecture

16

• It is possible to use one software strategy on a different hardware arrangement

• Also possible to simulate one hardware configuration on another
• Virtual Shared Disk (VSD) makes an IBM SP shared nothing system look like a shared disc

setup (for Oracle)

• From this point on, we deal only with shared nothing

17

Shared Nothing Challenges

17

• Partitioning the data

• Keeping the partitioned data balanced

• Splitting up queries to get the work done

• Avoiding distributed deadlock

• Concurrency control

• Dealing with node failure

Parallel Query Processing

19

Dividing up the Work

19

Application

Coordinator
Process

Worker
Process

Worker
Process

Worker
Process

20

Database Software on each node

20

App1

DBMS

W1 W2

C1

DBMS

W1 W2

App2

DBMS

W1 W2

C2

21

Inter-Query Parallelism

21

Improves throughput

Different queries/transactions execute on different processors
• (largely equivalent to material in lectures on concurrency)

22

Intra-Query Parallelism

22

Improves response times (lower latency)

Intra-operator (horizontal) parallelism
• Operators decomposed into independent operator instances, which perform the same

operation on different subsets of data

Inter-operator (vertical) parallelism
• Operations are overlapped

• Pipeline data from one stage to the next without materialisation

Bushy (independent) parallelism
• Subtrees in query plan executed concurrently

Intra-Operator Parallelism

24

Intra-Operator Parallelism

24

SQL Query

Subset
Queries

Subset
Queries

Subset
Queries

Subset
Queries

Processor Processor Processor Processor

25

Partitioning

25

Decomposition of operators relies on data being partitioned across the servers that
comprise the parallel database

• Access data in parallel to mitigate the I/O bottleneck

Partitions should aim to spread I/O load evenly across servers

Choice of partitions affords different parallel query processing approaches:
• Range partitioning

• Hash partitioning

• Schema partitioning

26

Range Partitioning

26

A-H

I-P

Q-Z

27

Hash Partitioning

27

Table

28

Schema Partitioning

28

Table 1

Table 2

29

Rebalancing Data

29

Data in proper balance

30

Rebalancing Data

30

Data in proper balance

Data grows, performance drops

31

Rebalancing Data

31

Data in proper balance

Data grows, performance drops

Add new nodes and disc

32

Rebalancing Data

32

Data in proper balance

Data grows, performance drops

Add new nodes and disc

Redistribute data to new nodes

33

Intra-Operator Parallelism

33

Example query:
SELECT c1,c2 FROM t WHERE c1>5.5

Assumptions:
• 100,000 rows

• Predicates eliminate 90% of the rows

Considerations for query plans:
• Data shipping

• Query shipping

34

Data Shipping

34

πc1,c2

σc1>5.5

∪

t1 t2 t3 t4

35

Data Shipping

35

Coordinator
and Worker

Network

Worker Worker Worker Worker

25,000 tuples 25,000 tuples 25,000 tuples 25,000 tuples

10,000 tuples
(c1,c2)

36

Query Shipping

36

πc1,c2

σc1>5.5

t1 t2 t3 t4

∪

πc1,c2

σc1>5.5

πc1,c2

σc1>5.5

πc1,c2

σc1>5.5

37

Query Shipping

37

Coordinator

Network

Worker Worker Worker Worker

2,500 tuples 2,500 tuples 2,500 tuples 2,500 tuples

10,000 tuples
(c1,c2)

38

Query Shipping Benefits

38

• Database operations are performed where the data are, as far as possible

• Network traffic is minimised

• For basic database operators, code developed for serial implementations can be
reused

• In practice, mixture of query shipping and data shipping has to be employed

Inter-Operator Parallelism

40

Inter-Operator Parallelism

40

Allows operators with a producer-consumer dependency to be executed concurrently
• Results produced by producer are pipelined directly to consumer

• Consumer can start before producer has produced all results

• No need to materialise intermediate relations on disk (although available buffer memory is
a constraint)

• Best suited to single-pass operators

41

Inter-Operator Parallelism

41time

Scan Join Sort

Scan

Join

Sort

42

Intra- + Inter-Operator Parallelism

42time

Scan Join Sort

Scan
Join

Sort

Scan
Scan

Join
Join

Sort
Sort

43

The Volcano Architecture

43

Basic operators as usual:
• scan, join, sort, aggregate (sum, count, average, etc)

The Exchange operator
• Inserted between the steps of a query to:

• Pipeline results

• Direct streams of data to the next step(s), redistributing as necessary

Provides mechanism to support both vertical and horizontal parallelism

44

Exchange Operators

44

Example query:

SELECT county, SUM(order_item)
FROM customer, order
WHERE order.customer_id=customer_id
GROUP BY county
ORDER BY SUM(order_item)

45

Exchange Operators

45

SORT

GROUP

HASH
JOIN

SCAN SCAN

Customer Order

46

Exchange Operators

46

EXCHANGE

SCAN SCAN

Customer

HASH
JOIN

HASH
JOIN

HASH
JOIN

47

Exchange Operators

47

EXCHANGE

SCAN SCAN

Customer

HASH
JOIN

HASH
JOIN

HASH
JOIN

EXCHANGE

SCAN SCAN SCAN

Order

48

EXCHANGE

SCAN SCAN

Customer

HASH
JOIN

HASH
JOIN

HASH
JOIN

EXCHANGE

SCAN SCAN SCAN

Order

EXCHANGE

EXCHANGE

GROUPGROUP

SORT

48

Bushy Parallelism

50

Bushy Parallelism
Execute subtrees concurrently

50

σ

π

⨝

R S T U
⨝

⨝

π

Parallel Query Processing

52

Some Parallel Queries

52

• Enquiry

• Co-located Join

• Directed Join

• Broadcast Join

• Repartitioned Join

Combine aspects of intra-operator and bushy parallelism

53

Orders Database

53

CKEY CNAME … CNATION …

OKEY DATE … CKEY …

SKEY SNAME … SNATION …

SKEY …

CUSTOMER

ORDER

SUPPLIER

54

Enquiry/Query without join
"How many customers live in the UK?"

55

Enquiry/Query without join
"How many customers live in the UK?"

1. Count matching tuples in each
partition of CUSTOMER

SCAN

COUNT
Worker Tasks

CUSTOMER

56

Enquiry/Query without join
"How many customers live in the UK?"

1. Count matching tuples in each
partition of CUSTOMER

2. Pass counts to coordinator

SCAN

COUNT
Worker Tasks

Coordinator

CUSTOMER

57

Enquiry/Query without join
"How many customers live in the UK?"

1. Count matching tuples in each
partition of CUSTOMER

2. Pass counts to coordinator

3. Sum counts and return

SCAN

COUNT
Worker Tasks

SUMCoordinator

CUSTOMER

58

Co-located join
“Which customers placed orders in July?”

59

Co-located join
“Which customers placed orders in July?”

ORDER, CUSTOMER partitioned on CKEY

Therefore, corresponding entries are on
the same node

60

Co-located join
“Which customers placed orders in July?”

ORDER, CUSTOMER partitioned on CKEY

Therefore, corresponding entries are on
the same node

1. Join CUSTOMER and ORDER on each
partition

SCAN

JOIN

CUSTOMER ORDER

SCAN

Worker Tasks

61

Co-located join
“Which customers placed orders in July?”

ORDER, CUSTOMER partitioned on CKEY

Therefore, corresponding entries are on
the same node

1. Join CUSTOMER and ORDER on each
partition

2. Pass joined relations to coordinator

SCAN

JOIN

CUSTOMER ORDER

SCAN

Worker Tasks

Coordinator

62

Co-located join
“Which customers placed orders in July?”

ORDER, CUSTOMER partitioned on CKEY

Therefore, corresponding entries are on
the same node

1. Join CUSTOMER and ORDER on each
partition

2. Pass joined relations to coordinator

3. Take union and return
SCAN

JOIN

CUSTOMER ORDER

SCAN

Worker Tasks

Coordinator UNION

63

Directed join (Parallel associative join)
“Which customers placed orders in July?”

64

Directed join (Parallel associative join)
“Which customers placed orders in July?”

ORDER partitioned on OKEY
CUSTOMER partitioned on CKEY

65

Directed join (Parallel associative join)
“Which customers placed orders in July?”

ORDER partitioned on OKEY
CUSTOMER partitioned on CKEY

1. Scan ORDER on each partition

SCAN

Worker
Task 1

ORDER

66

Directed join (Parallel associative join)
“Which customers placed orders in July?”

ORDER partitioned on OKEY
CUSTOMER partitioned on CKEY

1. Scan ORDER on each partition

2. Send tuples to appropriate CUSTOMER
node based on ORDER.CKEY

SCAN

Worker
Task 1

Worker
Task 2

ORDER

67

Directed join (Parallel associative join)
“Which customers placed orders in July?”

ORDER partitioned on OKEY
CUSTOMER partitioned on CKEY

1. Scan ORDER on each partition

2. Send tuples to appropriate CUSTOMER
node based on ORDER.CKEY

3. Join ORDER tuples with each
CUSTOMER fragment

SCAN
SCAN

JOIN

Worker
Task 1

Worker
Task 2

CUSTOMERORDER

68

Directed join (Parallel associative join)
“Which customers placed orders in July?”

ORDER partitioned on OKEY
CUSTOMER partitioned on CKEY

1. Scan ORDER on each partition

2. Send tuples to appropriate CUSTOMER
node based on ORDER.CKEY

3. Join ORDER tuples with each
CUSTOMER fragment

4. Send joined relations to coordinator
SCAN

SCAN

JOIN

Worker
Task 1

Worker
Task 2

CUSTOMERORDER

Coordinator

69

Directed join (Parallel associative join)
“Which customers placed orders in July?”

ORDER partitioned on OKEY
CUSTOMER partitioned on CKEY

1. Scan ORDER on each partition

2. Send tuples to appropriate CUSTOMER
node based on ORDER.CKEY

3. Join ORDER tuples with each
CUSTOMER fragment

4. Send joined relations to coordinator

5. Take union and return

SCAN
SCAN

JOIN

Worker
Task 1

Worker
Task 2

CUSTOMERORDER

Coordinator UNION

70

Broadcast join (Parallel nested loop join)
“Which customers and suppliers are in the
same country?”

71

Broadcast join (Parallel nested loop join)
“Which customers and suppliers are in the
same country?”

SUPPLIER partitioned on SKEY
CUSTOMER partitioned on CKEY
Join on CNATION=SNATION

72

Broadcast join (Parallel nested loop join)
“Which customers and suppliers are in the
same country?”

SUPPLIER partitioned on SKEY
CUSTOMER partitioned on CKEY
Join on CNATION=SNATION

1. Scan SUPPLIER on each partition

SCAN

Worker
Task 1

SUPPLIER

73

Broadcast join (Parallel nested loop join)
“Which customers and suppliers are in the
same country?”

SUPPLIER partitioned on SKEY
CUSTOMER partitioned on CKEY
Join on CNATION=SNATION

1. Scan SUPPLIER on each partition

2. Send tuples to all CUSTOMER nodes

SCAN

Worker
Task 1

Worker
Task 2

SUPPLIER

broadcast

74

Broadcast join (Parallel nested loop join)
“Which customers and suppliers are in the
same country?”

SUPPLIER partitioned on SKEY
CUSTOMER partitioned on CKEY
Join on CNATION=SNATION

1. Scan SUPPLIER on each partition

2. Send tuples to all CUSTOMER nodes

3. Join SUPPLIER tuples with each
CUSTOMER fragment

SCAN
SCAN

JOIN

Worker
Task 1

Worker
Task 2

CUSTOMERSUPPLIER

broadcast

75

Broadcast join (Parallel nested loop join)
“Which customers and suppliers are in the
same country?”

SUPPLIER partitioned on SKEY
CUSTOMER partitioned on CKEY
Join on CNATION=SNATION

1. Scan SUPPLIER on each partition

2. Send tuples to all CUSTOMER nodes

3. Join SUPPLIER tuples with each
CUSTOMER fragment

4. Send joined relations to coordinator

SCAN
SCAN

JOIN

Worker
Task 1

Worker
Task 2

CUSTOMERSUPPLIER

Coordinator

broadcast

76

Broadcast join (Parallel nested loop join)
“Which customers and suppliers are in the
same country?”

SUPPLIER partitioned on SKEY
CUSTOMER partitioned on CKEY
Join on CNATION=SNATION

1. Scan SUPPLIER on each partition

2. Send tuples to all CUSTOMER nodes

3. Join SUPPLIER tuples with each
CUSTOMER fragment

4. Send joined relations to coordinator

5. Take union and return

SCAN
SCAN

JOIN

Worker
Task 1

Worker
Task 2

CUSTOMERSUPPLIER

Coordinator UNION

broadcast

77

Repartitioned join (Parallel hash join)
“Which customers and suppliers are in the
same country?”

78

Repartitioned join (Parallel hash join)
“Which customers and suppliers are in the
same country?”

SUPPLIER partitioned on SKEY
CUSTOMER partitioned on CKEY
Join on CNATION=SNATION

79

Repartitioned join (Parallel hash join)
“Which customers and suppliers are in the
same country?”

SUPPLIER partitioned on SKEY
CUSTOMER partitioned on CKEY
Join on CNATION=SNATION

1. Scan SUPPLIER, CUSTOMER

SCAN SCAN

Worker
Task 1

Worker
Task 2

CUSTOMERSUPPLIER

80

Repartitioned join (Parallel hash join)
“Which customers and suppliers are in the
same country?”

SUPPLIER partitioned on SKEY
CUSTOMER partitioned on CKEY
Join on CNATION=SNATION

1. Scan SUPPLIER, CUSTOMER

2. Repartition on *NATION and send to
appropriate worker for Task 3

SCAN SCAN

Worker
Task 1

Worker
Task 2

CUSTOMERSUPPLIER

Worker
Task 3

81

Repartitioned join (Parallel hash join)
“Which customers and suppliers are in the
same country?”

SUPPLIER partitioned on SKEY
CUSTOMER partitioned on CKEY
Join on CNATION=SNATION

1. Scan SUPPLIER, CUSTOMER

2. Repartition on *NATION and send to
appropriate worker for Task 3

3. Join SUPPLIER and CUSTOMER tuples SCAN SCAN

Worker
Task 1

Worker
Task 2

CUSTOMERSUPPLIER

JOIN
Worker
Task 3

82

Repartitioned join (Parallel hash join)
“Which customers and suppliers are in the
same country?”

SUPPLIER partitioned on SKEY
CUSTOMER partitioned on CKEY
Join on CNATION=SNATION

1. Scan SUPPLIER, CUSTOMER

2. Repartition on *NATION and send to
appropriate worker for Task 3

3. Join SUPPLIER and CUSTOMER tuples

4. Send joined relations to coordinator

SCAN SCAN

Worker
Task 1

Worker
Task 2

CUSTOMERSUPPLIER

Coordinator

JOIN
Worker
Task 3

83

Repartitioned join (Parallel hash join)
“Which customers and suppliers are in the
same country?”

SUPPLIER partitioned on SKEY
CUSTOMER partitioned on CKEY
Join on CNATION=SNATION

1. Scan SUPPLIER, CUSTOMER

2. Repartition on *NATION and send to
appropriate worker for Task 3

3. Join SUPPLIER tuples CUSTOMER tuples

4. Send joined relations to coordinator

5. Take union and return

SCAN SCAN

Worker
Task 1

Worker
Task 2

CUSTOMERSUPPLIER

Coordinator UNION

JOIN
Worker
Task 3

Concurrency Control

85

Concurrency and Parallelism

85

• A single transaction may update data in several different places

• Multiple transactions may be using the same (distributed) tables simultaneously

• One or several nodes could fail

• Requires concurrency control and recovery across multiple nodes for:
• Locking and deadlock detection

• Two-phase commit to ensure ‘all or nothing’

86

Locking and Deadlocks

86

• With Shared Nothing architecture, each node is responsible for locking its own data

• No global locking mechanism

• However:
• T1 locks item A on Node 1 and wants item B on Node 2

• T2 locks item B on Node 2 and wants item A on Node 1

• Distributed Deadlock

87

Resolving Deadlocks

87

Simple approach – Timeouts

1. Timeout T2, after wait exceeds a certain interval
• Interval may need random element to avoid ‘chatter’

i.e. both transactions give up at the same time and then try again

2. Rollback T2 to let T1 to proceed

3. Restart T2, which can now complete

88

Resolving Deadlocks

88

More sophisticated approach (used by DB2)

• Each node maintains a local ‘wait-for’ graph

• Distributed deadlock detector (DDD) runs at the catalogue node for each database

• Periodically, all nodes send their graphs to the DDD

• DDD records all locks found in wait state

• Transaction becomes a candidate for termination if found in same lock wait state on
two successive iterations

Reliability

90

Reliability

90

We wish to preserve the ACID properties for parallelised transactions
• Isolation is taken care of by 2PL protocol

• Isolation implies Consistency

• Durability can be taken care of node-by-node, with proper logging and recovery routines

• Atomicity is the hard part. We need to commit all parts of a transaction, or abort all parts

Two-phase commit protocol (2PC) is used to ensure that Atomicity is preserved

91

Two-Phase Commit (2PC)

91

Distinguish between:
• The global transaction
• The local transactions into which the global transaction is decomposed

Global transaction is managed by a single site, known as the coordinator

Local transactions may be executed on separate sites, known as the participants

92

Phase 1: Voting

92

• Coordinator sends “prepare T” message to all participants

• Participants respond with either “vote-commit T” or
“vote-abort T”

• Coordinator waits for participants to respond within a timeout period

93

Phase 2: Decision

93

• If all participants return “vote-commit T” (to commit), send “commit T” to all
participants. Wait for acknowledgements within timeout period.

• If any participant returns “vote-abort T”, send “abort T” to all participants. Wait for
acknowledgements within timeout period.

• When all acknowledgements received, transaction is completed.

• If a site does not acknowledge, resend global decision until it is acknowledged.

94

Normal Operation

94

C P

95

Normal Operation

95

C P
prepare T

96

Normal Operation

96

C P
prepare T

vote-commit T

97

Normal Operation

97

C P
prepare T

vote-commit T

Voting Phase

98

Normal Operation

98

C P
prepare T

vote-commit T

vote-commit T
received from all
participants

99

Normal Operation

99

C P
prepare T

vote-commit T

commit T

vote-commit T
received from all
participants

100

Normal Operation

10
0

C P
prepare T

vote-commit T

commit T

ack

vote-commit T
received from all
participants

101

Normal Operation

10
1

C P
prepare T

vote-commit T

commit T

ack

vote-commit T
received from all
participants

Decision Phase

102

Logging

10
2

C P
prepare T

vote-commit T

commit T

ack

<commit T>

<begin-commit T>

<end T>

<ready T>

<commit T>

vote-commit T
received from all
participants

103

Aborted Transaction

10
3

C P
prepare T

vote-commit T

abort T

ack

<abort T>

<begin-commit T>

<end T>

<ready T>

<abort T>

vote-abort T received
from at least one
participant

104

Aborted Transaction

10
4

C P
prepare T

vote-abort T

abort T

ack

<abort T>

<begin-commit T>

<end T>

<abort T>

P

vote-abort T received
from at least one
participant

105

State Transitions

10
5

C P
prepare T

vote-commit T

commit T

ack

vote-commit T
received from all
participants

INITIAL

WAIT

COMMIT

INITIAL

READY

COMMIT

106

State Transitions
C P

prepare T

vote-commit T

abort T

ack

vote-abort T received
from at least one
participant

INITIAL

WAIT

ABORT

INITIAL

READY

ABORT

107

State Transitions
C P

prepare T

vote-abort T

abort T

ack

P

INITIAL

WAIT

ABORT

INITIAL

ABORT

108

Coordinator State Diagram

sent: prepare T

recv: vote-commit T
sent: commit T

INITIAL

WAIT

COMMIT ABORT

recv: vote-abort T
sent: abort T

recv: ack recv: ack

109

Participant State Diagram

recv: prepare T
sent: vote-commit T

recv: commit T
send: ack

INITIAL

READY

COMMIT ABORT

recv: prepare T
sent: vote-abort T

recv: abort T
send: ack

110

Dealing with failures
If the coordinator or a participant fails during the commit, two things happen:

• The other sites will time out while waiting for the next message from the failed site and
invoke a termination protocol

• When the failed site restarts, it tries to work out the state of the commit by invoking a
recovery protocol

The behaviour of the sites under these protocols depends on the state they were in
when the site failed

111

Termination Protocol: Coordinator
Timeout in WAIT

• Coordinator is waiting for participants to
vote on whether they're going to commit
or abort

• A missing vote means that the
coordinator cannot commit the global
transaction

• Coordinator may abort the global
transaction

sent: prepare T

recv: vote-commit T
sent: commit T

INITIAL

WAIT

COMMIT ABORT

recv: vote-abort T
sent: abort T

recv: ack recv: ack

112

Termination Protocol: Coordinator
Timeout in COMMIT/ABORT

• Coordinator is waiting for participants to
acknowledge successful commit or abort

• Coordinator resends global decision to
participants who have not acknowledged

sent: prepare T

recv: vote-commit T
sent: commit T

INITIAL

WAIT

COMMIT ABORT

recv: vote-abort T
sent: abort T

recv: ack recv: ack

113

Termination Protocol: Participant
Timeout in INITIAL

• Participant is waiting for a “prepare T”

• May unilaterally abort the transaction
after a timeout

• If “prepare T” arrives after unilateral
abort, either:
• resend the “vote-abort T” message or
• ignore (coordinator then times out in

WAIT)

recv: prepare T
sent: vote-commit T

recv: commit T
send: ack

INITIAL

READY

COMMIT ABORT

recv: prepare T
sent: vote-abort T

recv: abort T
send: ack

114

Termination Protocol: Participant
Timeout in READY

• Participant is waiting for the instruction
to commit or abort – blocked without
further information

• Alternatively, use cooperative
termination protocol – contact other
participants to find one who knows the
decision

recv: prepare T
sent: vote-commit T

recv: commit T
send: ack

INITIAL

READY

COMMIT ABORT

recv: prepare T
sent: vote-abort T

recv: abort T
send: ack

115

Cooperative Termination Protocol
Assumes that participants are aware of each other

• Coordinator sends list of participants with "prepare T"

If a participant P times out while waiting for the global decision, it contacts the other
participants to see if they know it

Response from the other participant depends on their state and any vote they've sent:
• INITIAL – hasn't yet voted, so unilaterally aborts by sending "abort T"

• READY – voted to abort, so sends "abort T"

• READY – voted to commit, but doesn't know the global decision, so sends "uncertain T"

• ABORT/COMMIT – knows the global decision, so sends "commit T" or "abort T"

If all participants return "uncertain T", then P remains blocked

116

Recovery Protocol: Coordinator
Failure in INITIAL

• Commit not yet begun, restart commit
procedure

sent: prepare T

recv: vote-commit T
sent: commit T

INITIAL

WAIT

COMMIT ABORT

recv: vote-abort T
sent: abort T

recv: ack recv: ack

117

Recovery Protocol: Coordinator
Failure in WAIT

• Coordinator has sent “prepare T”, but
has not yet received all
vote-commit/vote-abort messages from
participants

• Recovery restarts commit procedure by
resending “prepare T”

sent: prepare T

recv: vote-commit T
sent: commit T

INITIAL

WAIT

COMMIT ABORT

recv: vote-abort T
sent: abort T

recv: ack recv: ack

118

Recovery Protocol: Coordinator
Failure in COMMIT/ABORT

• If coordinator has received all “ack”
messages, complete successfully

• Otherwise, invoke terminate protocol
(i.e. resend global decision)

sent: prepare T

recv: vote-commit T
sent: commit T

INITIAL

WAIT

COMMIT ABORT

recv: vote-abort T
sent: abort T

recv: ack recv: ack

119

Recovery Protocol: Participant
Failure in INITIAL

• Participant has not yet voted

• Coordinator cannot have reached a
decision

• Participant should unilaterally abort by
sending “vote-abort T”

(what was the coordinator doing while the
participant was down?)

recv: prepare T
sent: vote-commit T

recv: commit T
send: ack

INITIAL

READY

COMMIT ABORT

recv: prepare T
sent: vote-abort T

recv: abort T
send: ack

120

Recovery Protocol: Participant
Failure in READY

• Participant has voted, but doesn't know
what the global decision was

• Treat as a timeout in READY
(use cooperative termination protocol)

recv: prepare T
sent: vote-commit T

recv: commit T
send: ack

INITIAL

READY

COMMIT ABORT

recv: prepare T
sent: vote-abort T

recv: abort T
send: ack

121

Recovery Protocol: Participant
Failure in COMMIT/ABORT

• “ack” message has been sent

• Participant need take no action

recv: prepare T
sent: vote-commit T

recv: commit T
send: ack

INITIAL

READY

COMMIT ABORT

recv: prepare T
sent: vote-abort T

recv: abort T
send: ack

2PC Variants

123

2PC Performance
Costs associated with 2PC:

• Number of messages transmitted between coordinator and participants

• Number of times that logs are accessed

We can improve the performance of 2PC if we can reduce either of these
• Coordinator keeps state information about current transactions in memory

(doesn't need to consult logs)

Two proposed approaches:
• Presumed-Abort

• Presumed-Commit

124

Presumed-Abort
Improves performance by letting the coordinator forget about transactions (remove
them from memory) in certain circumstances

If the global decision was to abort the transaction, write <abort T> to log and forget T
• If a participant asks the coordinator about the global decision and it isn't in memory, tell

the participant that the transaction was aborted

• Coordinator doesn't need to wrie <end T>

If the global decision was to commit the transaction, only forget it and write <commit
T> and <end T> to log once all "ack" messages have been received from participants

125

Presumed-Commit
Assumes that, if no information about a transaction is in memory, it must have been
committed

If the global decision is to commit, coordinator writes <commit T> to log, sends
"commit T" and forgets the transaction

If the global decision is to abort, coordinator writes <abort T> to log and sends "abort
T"

Only writes <end T> and forgets T when all "ack" messages have been received

Three-Phase Commit

127

Three-Phase Commit
As we saw earlier, 2PC can still block in certain circumstances

• Participant times out in READY and is unable to find out the global decision

3PC is non-blocking in the event of site failure (but not network partition)

Adds an additional state between WAIT/READY and COMMIT
• PRECOMMIT – process is ready to commit but has not yet committed

Some changes to termination and recovery protocols from 2PC

128

Coordinator State Diagram

sent: prepare T

recv: vote-commit T
sent: prepare-commit T

INITIAL

WAIT

PRECOMMIT ABORT

recv: vote-abort T
sent: abort T

recv: ack

recv: ackCOMMIT

recv: ready-commit T
sent: commit T

129

Participant State Diagram

recv: prepare T
sent: vote-commit T

recv: prepare-commit T
send: ready-commit

INITIAL

READY

PRECOMMIT ABORT

recv: prepare T
sent: vote-abort T

recv: abort T
send: ack

COMMIT

recv: commit T
send: ack

130

3PC Termination Protocol: Coordinator
Timeout in PRECOMMIT

• Coordinator does not if non-responding
participants have moved to PRECOMMIT,
but it does know that they're all in
READY at least (so have all voted to
commit)

• Move all participants to PRECOMMIT by
sending "prepare-commit T", then send
"commit T"

sent: prepare T

recv: vote-commit T
sent: prepare-commit T

INITIAL

WAIT

PRECOMMIT ABORT

recv: vote-abort T
sent: abort T

recv: ack

recv: ackCOMMIT

recv: ready-commit T
sent: commit T

131

3PC Termination Protocol: Coordinator
Timeout in COMMIT/ABORT

• Coordinator does not know if
participants have performed the commit
or abort, but knows that they are in
either PRECOMMIT or READY

• Participants follow their own recovery
protocols

sent: prepare T

recv: vote-commit T
sent: prepare-commit T

INITIAL

WAIT

PRECOMMIT ABORT

recv: vote-abort T
sent: abort T

recv: ack

recv: ackCOMMIT

recv: ready-commit T
sent: commit T

132

3PC Termination Protocol: Participant
Timeout in READY

• Participant has voted to commit, but
does not know the global decision

• Elects a new coordinator, and proceeds
according to its state:
• WAIT – new coordinator globally aborts

• PRECOMMIT – new coordinator globally
commits

• ABORT – all participants will also move
into ABORT

recv: prepare T
sent: vote-commit T

recv: prepare-commit T
send: ready-commit

INITIAL

READY

PRECOMMIT ABORT

recv: prepare T
sent: vote-abort T

recv: abort T
send: ack

COMMIT

recv: commit T
send: ack

133

3PC Recovery Protocol: Coordinator
Failure in WAIT

• Participants will have already terminated
the transaction due to termination
protocol

• Coordinator needs to ask participants
for outcome

sent: prepare T

recv: vote-commit T
sent: prepare-commit T

INITIAL

WAIT

PRECOMMIT ABORT

recv: vote-abort T
sent: abort T

recv: ack

recv: ackCOMMIT

recv: ready-commit T
sent: commit T

134

3PC Recovery Protocol: Coordinator
Failure in PRECOMMIT

• Participants will have already terminated
the transaction due to termination
protocol

• Coordinator needs to ask participants
for outcome

sent: prepare T

recv: vote-commit T
sent: prepare-commit T

INITIAL

WAIT

PRECOMMIT ABORT

recv: vote-abort T
sent: abort T

recv: ack

recv: ackCOMMIT

recv: ready-commit T
sent: commit T

135

3PC Recover Protocol: Participant
Failure in PRECOMMIT

• Participant must ask to determine how
other participants have terminated the
transaction

recv: prepare T
sent: vote-commit T

recv: prepare-commit T
send: ready-commit

INITIAL

READY

PRECOMMIT ABORT

recv: prepare T
sent: vote-abort T

recv: abort T
send: ack

COMMIT

recv: commit T
send: ack

Parallel Utilities

137

Parallel Utilities
Ancillary operations can also exploit the parallel hardware

• Parallel Data Loading/Import/Export

• Parallel Index Creation

• Parallel Rebalancing

• Parallel Backup

• Parallel Recovery

Next Lecture: Distributed Databases

