

Timestamps and
Advanced Transactions
COMP3211 Advanced Databases

Dr Nicholas Gibbins – nmg@ecs.soton.ac.uk

2020-2021

3

Overview

3

• Timestamps

• Savepoints

• Chained transactions

• Nested transactions

• Sagas

Timestamps

5

Timestamps
• An alternative to locks – deadlock cannot occur

• Timestamps are unique identifiers for transactions – the transaction start time: TS(T)

• For each resource X, there is:
• A read timestamp, read-TS(X)

• A write timestamp, write-TS(X)

• read-TS(X) and write-TS(X) are set to the timestamp of the most recent corresponding
transaction that accessed resource X

6

Timestamp Ordering
Transactions are ordered based on their timestamps

• Schedule is serialisable

• Equivalent serial schedule has the transactions in order of their timestamps

For each resource accessing by conflicting operations, the order in which the resource
is accessed must not violate the serialisability order

7

Basic Timestamp Ordering
TS(T) is compared with read-TS(X) and write-TS(X)

• Has this item been read or written before transaction T has had an opportunity to
read/write?

• Ensure that timestamp ordering is not violated

If timestamp ordering is violated, transaction is aborted and resubmitted with a new
timestamp

8

Basic Timestamp Ordering: write(X)
if read-TS(X) > TS(T) or write-TS(X) > TS(T)

then

abort and rollback T and reject operation

else

execute write(X)

set write-TS(X) to TS(T)

9

Basic Timestamp Ordering

9

time

X

10

Basic Timestamp Ordering

10

timewrite-TS(X)

X

11

Basic Timestamp Ordering

11

timewrite-TS(X) TS(T1)

T1

X

12

Basic Timestamp Ordering

12

timewrite-TS(X) TS(T1)

T1

TS(T2)

T2

X

13

Basic Timestamp Ordering

13

timewrite-TS(X) TS(T1)

T1

TS(T2)

T2

X

write(X)

14

Basic Timestamp Ordering

14

timewrite-TS(X)

write-TS(X) < TS(T1)
write-TS(X) := TS(T1)

TS(T1)

T1

TS(T2)

T2

X

write(X)

15

Basic Timestamp Ordering

15

time

write-TS(X) < TS(T1)
write-TS(X) := TS(T1)

TS(T1)

T1

TS(T2)

T2

X

write(X)

write-TS(X)

16

Basic Timestamp Ordering

16

time

write-TS(X) < TS(T1)
write-TS(X) := TS(T1)

TS(T1)

T1

TS(T2)

T2

X

write(X)

write(X)

write-TS(X)

17

Basic Timestamp Ordering

17

time

write-TS(X) < TS(T1)
write-TS(X) := TS(T1)

TS(T1)

T1

TS(T2)

T2

X
write-TS(X) < TS(T2)
write-TS(X) := TS(T2)

write(X)

write(X)

write-TS(X)

18

Basic Timestamp Ordering

18

time

write-TS(X) < TS(T1)
write-TS(X) := TS(T1)

TS(T1)

T1

TS(T2)

T2

X
write-TS(X) < TS(T2)
write-TS(X) := TS(T2)

write(X)

write(X)

write-TS(X)

19

Basic Timestamp Ordering

19

timewrite-TS(X) TS(T1)

T1

TS(T2)

T2

X

20

Basic Timestamp Ordering

20

timewrite-TS(X) TS(T1)

T1

TS(T2)

T2

X

write(X)

21

Basic Timestamp Ordering

21

timewrite-TS(X)

write-TS(X) < TS(T2)
write-TS(X) := TS(T2)

TS(T1)

T1

TS(T2)

T2

X

write(X)

22

Basic Timestamp Ordering

22

time

write-TS(X) < TS(T2)
write-TS(X) := TS(T2)

TS(T1)

T1

TS(T2)

T2

X

write(X)

write-TS(X)

23

Basic Timestamp Ordering

23

time

write-TS(X) < TS(T2)
write-TS(X) := TS(T2)

TS(T1)

T1

TS(T2)

T2

X

write(X)

write(X)

write-TS(X)

24

Basic Timestamp Ordering

24

time

write-TS(X) < TS(T2)
write-TS(X) := TS(T2)

TS(T1)

T1

TS(T2)

T2

X
write-TS(X) > TS(T1)

write(X)

write(X)

write-TS(X)

25

Basic Timestamp Ordering

25

time

write-TS(X) < TS(T2)
write-TS(X) := TS(T2)

TS(T1)

T1

TS(T2)

T2

X
write-TS(X) > TS(T1)

abort T1

write(X)

write(X)

write-TS(X)

26

Basic Timestamp Ordering: read(X)
if write-TS(X) > TS(T)

then

abort and rollback T and reject operation

else

execute read(X)

set read-TS(X) to max(TS(T), read-TS(X))

27

Thomas’s Write Rule
• Modification of Basic TO that rejects fewer write operations

• Weakens the checks for write (X) so that obsolete write operations are ignored

• Does not enforce serialisability

28

Thomas’s Write Rule
if read-TS(X) > TS(T)

then
roll back T and reject operation

if write-TS(X) > TS(T)

then
do not execute write (X)
continue processing

else
execute write(X)
set write-TS(X) to TS(T)

29

Flat Transactions
Transactions considered so far are flat transactions

• Basic building block

• Only one level of control by the application

• All-or-nothing (commit or abort)

• The simplest type of transaction!

30

Long Duration Transactions

30

Transactions considered so far are short duration
• Banking or ticket reservations as example applications

• Transactions complete in minutes, if not seconds

Long-lived transactions present particular challenges
• More susceptible to failure (and rollback not acceptable)

• May lock and access many data items (increases chance of deadlock)

Savepoints

32

Savepoints
Savepoint: an identifiable point in a flat transaction representing a partially consistent
state which can be used as an internal restart point for the transaction

Used for deadlock handling
• partially rollback transaction in order to release required locks

Savepoints may be persistent
• Following a system crash, restart active transactions from their most recent savepoints

33

Savepoints

33

START T1

operation 1
operation 2
operation 3

SAVEPOINT 1

operation 4
operation 5
operation 6

SAVEPOINT 2

ROLLBACK to 1

operation 7
operation 8
operation 9

34

Savepoints

34

START T1

operation 1
operation 2
operation 3

SAVEPOINT 1

operation 4
operation 5
operation 6

SAVEPOINT 2

ROLLBACK to 1

operation 7
operation 8
operation 9

work covered by
savepoint 1

35

Savepoints

35

START T1

operation 1
operation 2
operation 3

SAVEPOINT 1

operation 4
operation 5
operation 6

SAVEPOINT 2

ROLLBACK to 1

operation 7
operation 8
operation 9

operation 4
operation 5
operation 6

SAVEPOINT 3

operation 7
operation 8
operation 9

SAVEPOINT 4

work covered by
savepoint 1

Chained Transactions

37

Chained Transactions

Transaction broken into
subtransactions which are
executed serially

On chaining to the next
subtransaction:

• commit results

• keep (some) locks

Cannot rollback to previous
subtransaction

37

START T1

operation 1
operation 2
operation 3

CHAIN

operation 4
operation 5
operation 6

CHAIN

38

Savepoints versus Chained Transactions

38

• Both allow substructure to be imposed on a long-running application program
• Database context is preserved

• Cursors are kept

• Commit vs Savepoint
• Chained - rollback only to previous ‘savepoint’

• Savepoints - can rollback to arbitrary savepoint

• Locks
• Chained frees unwanted locks

39

Savepoints versus Chained Transactions

39

• Work lost
• Savepoints more flexible than flat transactions, as long as the system does not crash

• Restart
• Chained transactions can restart from most recent commit, as long as no processing

context hidden in local programming variables

• Both organise work into a sequence of actions

Nested Transactions

41

Nested Transactions
Transaction forms a hierarchy of subtransactions
(partial order on set of subtransactions)

Subtransactions may abort without aborting their parent transaction
• May restart subtransaction

Three rules for nested transactions:
• Commit Rule

• Rollback Rule

• Visibility Rule

42

Nested Transactions
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

43

Nested Transactions
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

START T/1

invoke T/1/1

invoke T/1/2

COMMIT

44

Nested Transactions
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

START T/1

invoke T/1/1

invoke T/1/2

COMMIT

START T/1/1

COMMIT

45

Nested Transactions
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

START T/1

invoke T/1/1

invoke T/1/2

COMMIT

START T/1/1

COMMIT

START T/1/2

COMMIT

46

Nested Transactions
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

START T/1

invoke T/1/1

invoke T/1/2

COMMIT

START T/2

COMMIT

START T/1/1

COMMIT

START T/1/2

COMMIT

47

Nested Transactions
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

START T/1

invoke T/1/1

invoke T/1/2

COMMIT

START T/2

COMMIT

START T/3

invoke T/3/1

COMMIT

START T/1/1

COMMIT

START T/1/2

COMMIT

48

Nested Transactions
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

START T/1

invoke T/1/1

invoke T/1/2

COMMIT

START T/2

COMMIT

START T/3

invoke T/3/1

COMMIT

START T/1/1

COMMIT

START T/1/2

COMMIT

START T/3/1

COMMIT

49

Commit Rule

49

The commit of a subtransaction makes the results accessible only to the parent

The final commit happens only when all ancestors finally commit

50

Rollback Rule

50

If any [sub]transaction rolls back, all of its subtransactions roll back

51

Visibility Rule

51

Changes made by a subtransaction are visible to its parent

Objects held by a parent can be made accessible to subtransactions

Changes made by a subtransaction are not visible to its siblings

52

Observations

52

Subtransactions are not fully equivalent to flat transactions:
• Atomic

• Consistency preserving

• Isolated

• Not durable, because of the commit rule

53

Observations

53

Nesting and program modularisation complement each other
• Well designed module has a clean interface, and no global variables

• If it touches the database, the database is a large global variable

• If the module is protected as a subtransaction, then database changes are kept clean too

Nested transactions permit intra-transaction parallelism

54

Emulating Nesting with Savepoints
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

55

Emulating Nesting with Savepoints
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

save T/1

56

Emulating Nesting with Savepoints
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

START T/1

invoke T/1/1

invoke T/1/2
COMMIT

save T/1

57

Emulating Nesting with Savepoints
START T

invoke T/1

invoke T/2

invoke T/3

COMMIT

START T/1

invoke T/1/1

invoke T/1/2
COMMIT

START T/2

COMMIT

START T/3

invoke T/3/1

COMMIT

START T/1/1

COMMIT

START T/1/2

COMMIT

START T/3/1

COMMIT

save T/1
save T/1/1

save T/3
save T/3/1

save T/2

save T/1/2

58

Observations

58

Using savepoints is more flexible than nested transactions for internal recovery
• Can roll back further

True nested transactions are needed in order to run subtransactions in parallel (Intra-
transaction parallelism)

• Emulating with savepoints needs 'subtransactions' to be run in strict sequence

True nested can pass locks selectively
• More flexible than savepoints

• “Similar but different”

Sagas

60

Sagas
Saga: a collection of actions (= flat transactions) that form a long-duration transaction

Execution based around notion of compensating transactions
• Inverse of actions that allow them to be selectively rolled back

• Used to recover from partial execution

61

Sagas

61

Sagas specified as a digraph
• Nodes are either actions or the terminal nodes abort and complete

• One node is designated the start

Paths in graph represent sequences of actions
• Paths leading to abort are sequences of actions that cause the overall transaction to be

rolled back

• Paths leading to complete are successful sequences that make persistent changes to the
database

62

Saga Execution

62

Each action A has a compensating transaction A-1

Assume that if A is an action and α a sequence of legal actions, then AαA-1 ≣ α

If execution of a saga leads to abort, roll back the saga by executing the compensating
transactions

Next Lecture: Logging and Recovery

