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Why do we need Description Logics?
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RDF Schema isn’t sufficient for all tasks
• There are things you can’t express

• There are things you can’t infer
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Description Logics
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A family of knowledge representation formalisms
• A subset of first order predicate logic (FOPL)

• Decidable – trade-off of expressivity against algorithmic complexity

• Well understood – derived from work in the mid-80s to early 90s

• Model-theoretic formal semantics 

• Simpler syntax than FOPL

This module assumes that you're familiar with FOPL.

If you need a refresher, the following resources are available:
• Lecture notes for COMP1215 Foundations of Computer Science (on ECS intranet)

• Johnsonbaugh, R. (2014) Discrete Mathematics, 7th ed. Chapter 1. (ebook via library)
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Description Logics
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Description logics restrict the predicate types that can be used
• Unary predicates denote concept membership

𝑃𝑒𝑟𝑠𝑜𝑛(𝑥)

• Binary predicates denote roles between instances

ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑(𝑥, 𝑦)

Note on terminology: the DL literature uses slightly different terms to those in RDFS
• Class and concept are interchangeable terms

• Role, relation and property are interchangeable terms
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Defining ontologies with Description Logics

6

Describe classes (concepts) in terms of their necessary and sufficient conditions

Consider an attribute A of a class C:

• Attribute A is a necessary condition for membership of C
• If an object is an instance of C, then it has A

• Attribute A is a sufficient condition for membership of C
• If an object has A, then it is an instance of C
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Description Logic Reasoning Tasks
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Satisfaction
• “Can this class have any instances?"

Subsumption
• "Is every instance of class C necessarily an instance of class D?"

Classification
• "What classes is this object an instance of?"
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Concepts as sets
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Expressions
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Description logic expressions consist of:

• Concept and role descriptions:
• Atomic concepts: Person

• Atomic roles: hasChild

• Complex concepts: “person with two living parents”

• Complex roles: “has parent’s brother” (i.e. "has uncle")

• Axioms that make statements about how concepts or roles are related to each other:
• “Every person with two living parents is thankful”

• “hasUncle is equivalent to has parent’s brother”
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Concept Constructors
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Used to construct complex concepts:
• Boolean concept constructors ¬𝐶 𝐶 ⊔ 𝐷 𝐶 ⊓ 𝐷
• Restrictions on role successors ∀𝑅. 𝐶 ∃𝑅. 𝐶
• Number/cardinality restrictions ≤ 𝑛 𝑅 ≥ 𝑛 𝑅 = 𝑛𝑅
• Nominals (singleton concepts) {𝑥}
• Universal concept, top ⊤
• Contradiction, bottom ⊥
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Role Constructors
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Used to construct complex roles:
• Concrete domains (datatypes)

• Inverse roles 𝑅!

• Role composition 𝑅 ∘ 𝑆
• Transitive roles 𝑅"
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OWL and Description Logics

13

• Not every description logic supports all constructors 

• More constructors = more expressive = higher complexity

• For example, OWL DL is equivalent to the logic 𝒮ℋ𝒪ℐ𝒩(𝐷)
• Atomic concepts and roles

• Boolean operators

• Universal, existential restrictions, number restrictions

• Role hierarchies

• Nominals

• Inverse and transitive roles (but not role composition)
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Boolean Concept Constructors: Intersection

Child ⊓ Happy
The class of things which are both 
children and happy

Read as “Child AND Happy”

HappyChild
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Boolean Concept Constructors: Union

Rich ⊔ Famous
The class of things which are rich or 
famous (or both)

Read as “Rich OR Famous”

FamousRich
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Boolean Concept Constructors: Complement

¬Happy
The class of things which are not happy

Read as “NOT Happy”

Happy
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Restrictions: Existential

∃hasPet. Cat
The class of things which have some pet 
that is a cat

• must have at least one pet

Read as “hasPet SOME Cat”

fluffy

Dog

felix

fido

john

jane

Cat

hasPet

jenny
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Restrictions: Existential
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Restrictions: Universal

∀hasPet. Cat
The class of things all of whose pets are 
cats 

• Or, which only have pets that are cats

• includes those things which have no pets

Read as “hasPet ONLY Cat”
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Restrictions: Number

= 1 hasPet
The class of things which have exactly one 
pet
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Restrictions: Number

≥ 2 hasPet
The class of things which have at least 
two pets
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jane

Restrictions: Number

≥ 2 hasPet
The class of things which have at least 
two pets
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Knowledge Bases
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A description logic knowledge base (KB) has two parts:

• TBox: terminology
• A set of axioms describing the structure of the domain 

(i.e., a conceptual schema)

• Concepts, roles

• ABox: assertions
• A set of axioms describing a concrete situation (data)

• Instances
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TBox Axioms
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Concept inclusion 
(C is a subclass of D)

𝐶 ⊑ 𝐷

Concept equivalence 
(C is equivalent to D)

𝐶 ≡ 𝐷

Role inclusion 
(R is a subproperty of S)

𝑅 ⊑ 𝑆

Role equivalence 
(R is equivalent to S)

𝑅 ≡ 𝑆

Role transitivity 
(R composed with itself is a 
subproperty of R)

𝑅8 ⊑ 𝑅
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Revisiting Necessary and Sufficient Conditions
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“Attribute A is a necessary/sufficient condition for membership of C”

Instead of talking directly about A, we can make a class expression (using the concept 
constructors) that represents the class of things with attribute A – call it D

• Membership of D is necessary/sufficient for membership of C
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Revisiting Necessary and Sufficient Conditions
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Membership of D is a necessary condition for membership of C

𝐶 ⊑ 𝐷
Membership of D is a sufficient condition for membership of C

𝐶 ⊒ 𝐷
Membership of D is both a necessary and a sufficient condition for membership of C

𝐶 ≡ 𝐷
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Revisiting Necessary and Sufficient Conditions
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Some common terminology:

𝐶 ⊑ 𝐷
• C is a primitive or partial class

𝐶 ≡ 𝐷
• C is a defined class

(you’ll see these terms used in the Protégé OWL Tutorial)
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ABox Axioms
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Concept instantiation

𝐶(𝑥)
• x is of type C

Role instantiation

𝑅(𝑥, 𝑦)
• x has R of y
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Axiom Examples

32

Every person is either living or dead

Every happy child has a loving parent

Every child who eats only cake is 
unhealthy

No elephants can fly

A mole is a sauce from Mexico that 
contains chili

All Englishmen are mad
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Axiom Examples
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Every person is either living or dead Person ⊑ Living ⊔ Dead

Every happy child has a loving parent Child ⊓ Happy ⊑ ∃hasParent. Loving

Every child who eats only cake is 
unhealthy

Child ⊓ ∀eats. Cake ⊓ ∃eats. Cake ⊑ ¬Healthy

No elephants can fly Elephant ⊓ FlyingThing ≡ ⊥

A mole is a sauce from Mexico that 
contains chili

Mole ≡
Sauce ⊓ ∃hasOrigin. Mexico ⊓
∃hasIngredient. Chili

All Englishmen are mad ∃bornIn. England ⊓ Male ⊑ Mad
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Tips for Description Logic Axioms
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• No single ‘correct’ answer - different modelling choices

• Break sentence down into pieces
• e.g. “successful man”, “spicy ingredient” etc

• Look for nouns and adjectives (concepts)

• Look for verb phrases (roles)

• Look for indicators of axiom type:
• “Every X is Y” - inclusion axiom

• “X is Y” - equivalence axiom

• Remember that ∀R.C is satisfied by instances which have no value for R
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Semantics
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Description Logics and Predicate Logic
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Description Logics are a subset of first order Predicate Logic with a simplified syntax

Every DL expression can be converted into an equivalent FOPL expression
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Description Logics and Predicate logic
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Every concept 𝐶 is translated to a formula 𝜙b(𝑥)
Every role 𝑅 is translated to a formula 𝜙c(𝑥, 𝑦)
Boolean concept constructors:

𝜙¬b 𝑥 = ¬𝜙b 𝑥
𝜙b⊔d 𝑥 = 𝜙b 𝑥 ∨ 𝜙d 𝑥
𝜙b⊓d 𝑥 = 𝜙b 𝑥 ∧ 𝜙d(𝑥)

Restrictions:

𝜙∃c.b 𝑥 = ∃𝑦. 𝜙c 𝑥, 𝑦 ∧ 𝜙b 𝑦
𝜙∀c.b 𝑥 = ∀𝑦. 𝜙c 𝑥, 𝑦 ⇒ 𝜙b(𝑦)
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Description Logics and Predicate logic
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Axioms are translated as follows:

Concept inclusion 𝐶 ⊑ 𝐷
∀𝑥. 𝜙b 𝑥 ⇒ 𝜙d(𝑥)

Concept equivalence 𝐶 ≡ 𝐷
∀𝑥. 𝜙b 𝑥 ⇔ 𝜙d(𝑥)
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Example

40

“Every child who eats cake is happy”
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Example

41

“Every child who eats cake is happy”

Child ⊓ ∃eats. Cake ⊑ Happy
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Example

42

“Every child who eats cake is happy”

Child ⊓ ∃eats. Cake ⊑ Happy

∀𝑥 𝜙befgh⊓∃ijkl.bjmi 𝑥 ⇒ 𝜙njoop 𝑥
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Example

43
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Example

44
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Example
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“Every child who eats cake is happy”
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Example
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“Every child who eats cake is happy”

Child ⊓ ∃eats. Cake ⊑ Happy
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∀𝑥 𝜙befgh 𝑥 ∧ 𝜙∃ijkl.bjmi 𝑥 ⇒ 𝜙njoop 𝑥
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Example

47

“Every child who eats cake is happy”
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Example

48

“Every child who eats cake is happy”
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Example
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“Every child who eats cake is happy”

Child ⊓ ∃eats. Cake ⊑ Happy

∀𝑥 𝜙befgh⊓∃ijkl.bjmi 𝑥 ⇒ 𝜙njoop 𝑥

∀𝑥 𝜙befgh 𝑥 ∧ 𝜙∃ijkl.bjmi 𝑥 ⇒ 𝜙njoop 𝑥

∀𝑥 𝜙befgh 𝑥 ∧ ∃𝑦 𝜙ijkl 𝑥, 𝑦 ∧ 𝜙bjmi 𝑦 ⇒ 𝜙njoop(𝑥)
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Example
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“Every child who eats cake is happy”

Child ⊓ ∃eats. Cake ⊑ Happy

∀𝑥 𝜙befgh⊓∃ijkl.bjmi 𝑥 ⇒ 𝜙njoop 𝑥

∀𝑥 𝜙befgh 𝑥 ∧ 𝜙∃ijkl.bjmi 𝑥 ⇒ 𝜙njoop 𝑥

∀𝑥 𝜙befgh 𝑥 ∧ ∃𝑦 𝜙ijkl 𝑥, 𝑦 ∧ 𝜙bjmi 𝑦 ⇒ 𝜙njoop(𝑥)
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Description Logic Semantics
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Δ is the domain (non-empty set of individuals)

Interpretation function ⋅ℐ (or 𝑒𝑥𝑡()) maps:

• Concept expressions to their extensions 

(set of instances of that concept, subsets of Δ)

• Roles to subsets of Δ×Δ
• Individuals to elements of Δ

Examples:

•𝐶ℐ is the set of members of 𝐶
• 𝐶 ⊔ 𝐷 ℐ

is the set of members of either 𝐶 or 𝐷
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Description Logic Semantics
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Syntax Semantics Notes

𝐶 ⊓ 𝐷 ℐ 𝐶ℐ ∩ 𝐷ℐ Conjunction

𝐶 ⊔ 𝐷 ℐ 𝐶ℐ ∪ 𝐷ℐ Disjunction

¬𝐶 ℐ Δ\Cℐ Complement

∃𝑅. 𝐶 ℐ {𝑥|∃𝑦 . 𝑥, 𝑦 ∈ 𝑅ℐ ∧ 𝑦 ∈ 𝐶ℐ} Existential

∀𝑅. 𝐶 ℐ {𝑥|∀𝑦 𝑥, 𝑦 ∈ 𝑅ℐ ⇒ 𝑦 ∈ 𝐶ℐ} Universal

≥ 𝑛 𝑅 ℐ {𝑥|# 𝑦 𝑥, 𝑦 ∈ 𝑅ℐ ≥ 𝑛} Min cardinality

≤ 𝑛 𝑅 ℐ {𝑥|# 𝑦 𝑥, 𝑦 ∈ 𝑅ℐ ≤ 𝑛} Max cardinality

= 𝑛 𝑅 ℐ {𝑥|# 𝑦 𝑥, 𝑦 ∈ 𝑅ℐ = 𝑛} Exact cardinality

⊥ ℐ ∅ Bottom

⊤ ℐ Δ Top
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Interpretation Example

Δ = 𝑣,𝑤, 𝑥, 𝑦, 𝑧
𝐴ℐ = 𝑣,𝑤, 𝑥
𝐵ℐ = 𝑥, 𝑦
𝑅ℐ = { 𝑣,𝑤 , 𝑣, 𝑥 , 𝑦, 𝑥 , 𝑥, 𝑧 }

w

𝑩ℐ

v

x

y

z

𝑨ℐ

Δ

R
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Interpretation Example

¬𝐵 ℐ =
𝐴 ⊔ 𝐵 ℐ =
¬𝐴 ⊓ 𝐵 ℐ =
∃𝑅. 𝐵 ℐ =
∀𝑅. 𝐵 ℐ =
∃𝑅. ∃𝑅. 𝐴 ℐ =
∃𝑅.¬ 𝐴 ⊓ 𝐵

ℐ

∃𝑅6. 𝐴 ℐ =
𝑅7 ℐ =

w

v

x

y

z

Δ

R

𝑩ℐ𝑨ℐ
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Answers

¬𝐵 ℐ = {v,w, z}
𝐴 ⊔ 𝐵 ℐ = {v,w, x, y}
¬𝐴 ⊓ 𝐵 ℐ = {y}
∃𝑅. 𝐵 ℐ = {v, y}
∀𝑅. 𝐵 ℐ = {y,w, z}
∃𝑅. ∃𝑅. 𝐴 ℐ = {}
∃𝑅.¬ 𝐴 ⊓ 𝐵

ℐ
= v, x

∃𝑅6 . 𝐴 ℐ = 𝑤, 𝑥, 𝑧
𝑅7 ℐ = { 𝑣,𝑤 , 𝑣, 𝑥 , 𝑣, 𝑧 , 𝑦, 𝑥 , 𝑦, 𝑧 , 𝑥, 𝑧 }

w

v

x

y

z

Δ

𝑩ℐ𝑨ℐ

R



DL Reasoning Revisited
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DL Reasoning Revisited

57

A description logic knowledge base comprises:
• A TBox defining concepts and roles

• An ABox containing assertations about instances

𝐾 = ⟨𝑇𝐵𝑜𝑥, 𝐴𝐵𝑜𝑥⟩

We can construct an interpretation ℐ = ⟨Δ,⋅ℐ⟩ which maps the instances, concepts and 
roles in 𝐾 onto a domain Δ via an interpretation function ⋅ℐ

We can redefine the reasoning tasks in terms of ℐ
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Satisfaction
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“Can this class have any instances?”

A class 𝐶 is satisfiable with respect to a KB 𝐾 iff
there exists an interpretation ℐ of 𝐾 with 𝐶ℐ ≠ ∅
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Subsumption

59

“Is every instance of this class necessarily an instance of this other class?”

A class 𝐶 is subsumed by a class 𝐷 with respect to a KB 𝐾 iff
for every interpretation ℐ of 𝐾, 𝐶ℐ ⊆ 𝐷ℐ
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Equivalence
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“Is every instance of this class necessarily an instance of this other class, and vice 
versa?”

A class 𝐶 is equivalent to a class 𝐷 with respect to a KB 𝐾 iff
for every interpretation ℐ of 𝐾, 𝐶ℐ = 𝐷ℐ
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Classification
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“Is this individual necessarily an instance of this class?”

An individual 𝑥 is an instance of class C wrt a KB 𝐾 iff
for every interpretation ℐ of 𝐾, 𝑥ℐ ∈ 𝐶ℐ
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Reduction to Satisfaction

62

Tableau-based reasoners for description logics (the predominant modern approach) 
reduce all reasoning tasks to satisfaction:

Subsumption
• 𝐶 is subsumed by 𝐷 ⟺ (𝐶 ⊓ ¬𝐷) is unsatisfiable

Equivalence
• 𝐶 is equivalent to 𝐷 ⟺ both (𝐶 ⊓ ¬𝐷) and(¬𝐶 ⊓ 𝐷) are unsatisfiable

Classification
• 𝑥 is an instance of 𝐶 ⟺ (¬𝐶 ⊓ 𝑥 ) is unsatisfiable
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Further Reading
Daniele Nardi and Ronald J. Brachman (2003) An Introduction to Description Logics, in 
Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi and Peter F. 
Patel-Schneider (eds) The Description Logic Handbook: Theory, implementation and 
applications, Cambridge University Press, 2003, pp.1-40. 

F. Baader and W. Nutt (2003) Basic Description Logics, in Franz Baader, Diego 
Calvanese, Deborah L. McGuinness, Daniele Nardi and Peter F. Patel-Schneider (eds) 
The Description Logic Handbook: Theory, implementation and applications, Cambridge 
University Press, 2003, pp.47-100.
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