


Multidimensional
Access Structures
COMP3211 Advanced Databases

Dr Nicholas Gibbins – nmg@ecs.soton.ac.uk



3

Overview
• Conventional indexes

• Hash-like
• grid files, partitioned hashing

• Hierarchical indexes
• multiple key, kd-trees, quad trees, r-trees, ub-trees

• Bitmap indexes



4

Multidimensional Access Structures
Indexes discussed so far are one-dimensional

• assume a single search key

• require a single linear order for keys (B-trees)

• require that the key be completely known for any lookup (hash tables)



5

Applications
Geographic information systems

• partial match queries

• range queries

• nearest-neighbour queries



Conventional Indexes



7

Scenario
• Personnel database

• EMPLOYEE table with attributes
• dept

• salary

• How can we find employees who work in the sales department and have salaries 
greater than £40,000? 



8

Approach #1
1. Get all matching records using an index on one attribute

2. Check values of other attribute on those records

Idept
...

scan for 
salary>40000

dept=sales



9

Approach #2
1. Use secondary indexes on each attribute to get two sets of record pointers

2. Take intersection of sets

Idept
... compare

for 
intersection

dept=sales

Isalary
...

salary>40000



10

Approach #3
1. Use secondary index on one attribute to select suitable index on other attribute

2. Get all matching records using selected index

Idept

dept=sales

...
Isalary

Isalary

Isalary

sales

research

production



11

For which queries is this index good?
• dept=sales Ù salary=40000

• dept=sales Ù salary>40000

• dept=sales

• salary = 40000



Grid Files



13

Grid File
• Partition multi-dimensional space with a 

grid

• Grid lines partition space into stripes

• Intersections of stripes from different 
dimensions define regions

salary

age

0 40 55 100
0k

20k

40k

100k



14

Grid File
• Partition multi-dimensional space with a 

grid

• Grid lines partition space into stripes

• Intersections of stripes from different 
dimensions define regions

salary

age

0 40 55 100
0k

20k

40k

100k

age < 40
salary < 100k
salary >= 40k



15

Grid File
• Each region associated with a pointer to 

a bucket of record pointers

• Attribute values for record determine 
region and therefore bucket

• Fixed number of regions – overflow 
blocks used to increase bucket size as 
necessary

• Can index grid on value ranges

salary

age

0 40 55 100
0k

20k

40k

100k



16

Grid files
Pro

• Good for multiple-key search

• Supports partial-match, range and nearest-neighbour queries

Con
- Space, management overhead (nothing is free)

- Need partitioning ranges that evenly split keys



Partitioned Hash



18

Partitioned Hash
• Hash function takes a list of attribute 

values as arguments

• Bits of hash value divided between 
attributes
• Effectively, a hash function per attribute

0 00 1 001 11 1

hash1 hash2

attribute 1 attribute 2



19

Example
hash1(sales) = 0

hash1(research) = 1

hash2(10000) = 00

hash2(20000) = 01

hash2(40000) = 10

hash2(100000) = 11

000

001

010

011

100

101

110

111



20

Insertion
hash1(sales) = 0

hash1(research) = 1

hash2(10000) = 00

hash2(20000) = 01

hash2(40000) = 10

hash2(100000) = 11

Fred works in sales
Fred’s salary is £40,000

000

001

010

011

100

101

110

111

Fred



21

Retrieval
hash1(sales) = 0

hash1(research) = 1

hash2(10000) = 00

hash2(20000) = 01

hash2(40000) = 10

hash2(100000) = 11

dept=sales Ù salary=40000

000

001

010

011

100

101

110

111



22

Retrieval
hash1(sales) = 0

hash1(research) = 1

hash2(10000) = 00

hash2(20000) = 01

hash2(40000) = 10

hash2(100000) = 11

salary=20000

000

001

010

011

100

101

110

111



23

Retrieval
hash1(sales) = 0

hash1(research) = 1

hash2(10000) = 00

hash2(20000) = 01

hash2(40000) = 10

hash2(100000) = 11

dept=sales

000

001

010

011

100

101

110

111



24

Partitioned hash
Pro

• Good hash function will evenly distribute records between buckets

• Supports partial-match queries

Con
• No good for nearest-neighbour or range queries



kd-Tree



26

kd-Tree
• Multidimensional binary search tree

• Each node splits the k-dimensional space along a hyperplane

• Nodes contain
• an attribute-value pair

• a pair of pointers

• All nodes at the same level discriminate for the same attribute

• Levels rotate between attributes of all dimensions



27

Example, k=2

salary

age

0 40 70 100
0k

45k

100k

55k



28

Example, k=2
age=40

salary

age

0 40 70 100
0k

45k

100k

55k



29

Example, k=2

salary=45k

age=40

salary

age

0 40 70 100
0k

45k

100k

55k



30

Example, k=2

salary=45k

age=40

salary=55k

salary

age

0 40 70 100
0k

45k

100k

55k



31

Example, k=2

salary=45k

age=40

salary=55k

age=70

salary

age

0 40 70 100
0k

45k

100k

55k



32

Example, k=2

salary=45k

20,20k

age=40

salary=55k

age=70
25,80k
35,45k

40,35k
55,45k

70,20k

50,55k
80,60k

salary

age

0 40 70 100
0k

45k

100k

55k



33

Partial-Match Queries
• If we know value of attribute, we can choose which branch to explore

• If we don’t know value of attribute, must explore both branches



34

Adapting kd-Trees to Secondary Storage
Average path length from root to leaf: log2n

Disk accesses should be kept as few as possible

Two approaches:
1. Multiway nodes (split values into n ranges)

2. Group nodes in blocks (node plus descendants to a given ply)



Quad-Tree



36

Quad-Trees
Two main types:

• Region quad-tree

• Point quad-tree



37

Region Quad-tree
• Each partition divides the space into four 

equal area sub-regions
• ne, nw, se, sw

• Split regions if they contain more 
records than will fit into a block

• Operations similar to those for kd-trees

salary

age

0 25 50 100
0k

25k

50k

100k



38

Region Quad-tree

salary

age

0 25 50 100
0k

25k

50k

100k



39

Region Quad-tree
50,50k

nw sw ne se

salary

age

0 25 50 100
0k

25k

50k

100k



40

Region Quad-tree
50,50k

25,25k

nw sw ne se

nw sw ne se

salary

age

0 25 50 100
0k

25k

50k

100k



41

Region Quad-tree

25,80k
50,55k

50,50k

25,25k
55,45k
70,20k

80,60k

nw sw ne se

20,20k 35,45k
40,35k

nw sw ne se

salary

age

0 25 50 100
0k

25k

50k

100k



42

Point Quad-Tree
• Partitions are not equal area

• Split lines centred on data points

• ne/nw/se/sw sub-regions

• Otherwise, equivalent to region quad-
tree

salary

age

0 35 50 100
0k

45k

55k

100k



43

Point Quad-Tree

salary

age

0 35 50 100
0k

45k

55k

100k



44

Point Quad-Tree
50,55k

nw sw ne se

salary

age

0 35 50 100
0k

45k

55k

100k



45

Point Quad-Tree
50,55k

35,45k

nw sw ne se

nw sw ne se

salary

age

0 35 50 100
0k

45k

55k

100k



46

Point Quad-Tree

25,80k

50,55k

35,45k
55,45k
70,20k

50,55k
80,60k

nw sw ne se

20,20k 35,45k 40,35k

nw sw ne se

salary

age

0 35 50 100
0k

45k

55k

100k



R-Tree



48

R-Trees
• Used to represent data that consists of 

k-dimensional data regions

• Internal nodes of tree represent regions 
that contain data regions

• Regions typically defined as top-right, 
bottom-left coordinates

r1

r2

r3

d1

d2

d3

d4

d5
d6



49

R-Trees

d1

d2
d3

d4

d5
d6

root



50

R-Trees

r1

r2

r3

d1

d2
d3

d4

d5
d6

root

r1 r2 r3



51

R-Trees

r1

r2

r3

d1

d2
d3

d4

d5
d6

root

r1 r2 r3

d1

d2

d3

d4

d5

d6



UB-Tree



53

UB-Tree
Basic approach:

• Map n-dimensional space onto a 1-
dimensional line using a fractal space-
filling curve

• Partition ranges and index using a B+tree

• When querying, identify regions of n-d 
space (= segments of 1-d line) that 
intersect with query rectangle



54

Z-Index
Map domain of each attribute onto n-bit 
integer

Order of points on Z-curve given by bit-
interleaving the positions on the axes

x = x1x2

y = y1y2

z-index = y1x1y2x2



55

Z-Index
Map domain of each attribute onto n-bit 
integer

Order of points on Z-curve given by bit-
interleaving the positions on the axes

x = x1x2

y = y1y2

z-index = y1x1y2x2

00 01 10 11

00

01

10

11



56

Z-Index
Map domain of each attribute onto n-bit 
integer

Order of points on Z-curve given by bit-
interleaving the positions on the axes

x = x1x2

y = y1y2

z-index = y1x1y2x2

00 01 10 11

00

01

10

11

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111



57

Z-Index
Map domain of each attribute onto n-bit 
integer

Order of points on Z-curve given by bit-
interleaving the positions on the axes

x = x1x2

y = y1y2

z-index = y1x1y2x2

00 01 10 11

00

01

10

11

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111



58

Z-Region Partition
Z-curve partitioned into contiguous 
ranges (z-regions)

• Note that these may not be contiguous 
regions in the multidimensional space

Z-regions mapped to leaf nodes of a 
B+tree

• A leaf node contain pointers to records 
whose attribute value locate them within 
the associated Z-region

0 d.2n-1Z-index



59

Z-Region Partition
Z-curve partitioned into contiguous 
ranges (z-regions)

• Note that these may not be contiguous 
regions in the multidimensional space

Z-regions mapped to leaf nodes of a 
B+tree

• A leaf node contain pointers to records 
whose attribute value locate them within 
the associated Z-region

0 d.2n-1Z-index



60

Z-Region Partition
Z-curve partitioned into contiguous 
ranges (z-regions)

• Note that these may not be contiguous 
regions in the multidimensional space

Z-regions mapped to leaf nodes of a 
B+tree

• A leaf node contain pointers to records 
whose attribute value locate them within 
the associated Z-region

0 d.2n-1Z-index



61

Querying UB-Trees
• Multidimensional range query can be 

considered as a k-dimensional rectangle

• Algorithm identifies z-regions that 
intersect with the query rectangle



62

Querying UB-Trees
• Multidimensional range query can be 

considered as a k-dimensional rectangle

• Algorithm identifies z-regions that 
intersect with the query rectangle



63

Querying UB-Trees
• Multidimensional range query can be 

considered as a k-dimensional rectangle

• Algorithm identifies z-regions that 
intersect with the query rectangle



64

Querying UB-Trees
• Multidimensional range query can be 

considered as a k-dimensional rectangle

• Algorithm identifies z-regions that 
intersect with the query rectangle



65

Querying UB-Trees
• Multidimensional range query can be 

considered as a k-dimensional rectangle

• Algorithm identifies z-regions that 
intersect with the query rectangle



66

Querying UB-Trees
• Multidimensional range query can be 

considered as a k-dimensional rectangle

• Algorithm identifies z-regions that 
intersect with the query rectangle



67

Querying UB-Trees
• Multidimensional range query can be 

considered as a k-dimensional rectangle

• Algorithm identifies z-regions that 
intersect with the query rectangle



68

Querying UB-Trees
• Multidimensional range query can be 

considered as a k-dimensional rectangle

• Algorithm identifies z-regions that 
intersect with the query rectangle



Bitmap Indexes



70

Bitmap indexes
Collection of bit-vectors used to index an attribute

• One bit-vector for each unique attribute value

• One bit for each record

Querying index involves combining bit-vectors with bitwise operators (&, |)
• A 1 in the ith position indicates that record i is a match



71

Example
An online homeware vendor sells products p1...p10

• Products p3 and p5 cost £100

• Product p1 costs £200

• Products p2, p7 and p10 cost £300

• Products p4, p6, p8 and p9 cost £400

• Products p1, p4, p5 and p9 are designed for lounges

• Products p5 and p7 are designed for dining rooms

• Products p3, p5, p6 and p10 are designed for kitchens



72

Example bitmap index
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

£100 0 0 1 0 1 0 0 0 0 0

£200 1 0 0 0 0 0 0 0 0 0

£300 0 1 0 0 0 0 1 0 0 1

£400 0 0 0 1 0 1 0 1 1 0

Lounge 1 0 0 1 1 0 0 0 1 0

Dining 0 0 0 0 1 0 1 0 0 0

Kitchen 0 0 1 0 1 1 0 0 0 1



73

Example bitmap index
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

£100 0 0 1 0 1 0 0 0 0 0

£200 1 0 0 0 0 0 0 0 0 0

£300 0 1 0 0 0 0 1 0 0 1

£400 0 0 0 1 0 1 0 1 1 0

Lounge 1 0 0 1 1 0 0 0 1 0

Dining 0 0 0 0 1 0 1 0 0 0

Kitchen 0 0 1 0 1 1 0 0 0 1

price=£300 Ù room=kitchen 



74

Example bitmap index
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

£100 0 0 1 0 1 0 0 0 0 0

£200 1 0 0 0 0 0 0 0 0 0

£300 0 1 0 0 0 0 1 0 0 1

£400 0 0 0 1 0 1 0 1 1 0

Lounge 1 0 0 1 1 0 0 0 1 0

Dining 0 0 0 0 1 0 1 0 0 0

Kitchen 0 0 1 0 1 1 0 0 0 1

price=£300 Ù room=kitchen 

0100001001 & 0010110001 = 0000000001



75

Example bitmap index
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

£100 0 0 1 0 1 0 0 0 0 0

£200 1 0 0 0 0 0 0 0 0 0

£300 0 1 0 0 0 0 1 0 0 1

£400 0 0 0 1 0 1 0 1 1 0

Lounge 1 0 0 1 1 0 0 0 1 0

Dining 0 0 0 0 1 0 1 0 0 0

Kitchen 0 0 1 0 1 1 0 0 0 1

price=£300 Ù room=kitchen 

0100001001 & 0010110001 = 0000000001

p10 is matching product



76

Compression
• Bit-vectors are typically sparse, with few 1 bits

• Large amount of wasted space

• Run-length encoding of bit-vectors to reduce stored size

• Bitwise operators must be applied to original bit-vectors
• Can decode RLE bit-vectors one run at a time



77

Bitmap indexes
Pro

• Efficient answering of partial-match queries

Con
• Requires fixed record numbers

• Changes to data file require changes to bitmap index



Next Lecture: Relational Algebra


