

REST in Practice
COMP3220 Web Infrastructure

Dr Nicholas Gibbins – nmg@ecs.soton.ac.uk

3

Web Services as state machines
Consider a hypothetical online bookseller: Orinoco Books

When we create an order, the order may be in one of a number of discrete states:
• Open: we can add or remove items to our order

• Paid: we have successfully sent payment to Orinoco, and can no longer change our order

• Shipping: Orinoco is preparing and dispatching our order

• Delivered: we have received our order

The order moves between states in response to our interactions with Orinoco

4

UML Statecharts: states and transitions
Common graphical notation for describing state machines

• Object-oriented extension to Harel’s statechart

• (you’ll need this for your coursework!)

Tip: label states with nouns or adjectives and transitions with verbs or verb phrases

door
open

door
closed

close door

states

transitions between states

open door

5

UML Statecharts: pseudostates
Two distinguished pseudostates:

• Initial state

• Final state

Choice pseudostate:

[value <= balance]

[value > balance]

guards
(used to choose which path to take)

6

Orinoco Workflow

open

shipping

paid

delivered

check
status

change
order

pay

deliver

prepare

create
order

[success]

[failure]cancel

Revisiting the
Richardson Maturity Model

8

Richardson Maturity Model

Hypermedia

HTTP

URI

9

Richardson Level 1
Multiple URIs used for resources

Key resource type from the workflow is an order
• http://orinoco.com/order/{order_id}

10

Richardson Level 2
We have different URIs for each order (resource)

How do we interact with the orders?
• create a new order

• change order (add/remove items)

• cancel an order

• checkout and payment (submit order)

• check order status

Use appropriate HTTP methods!

11

Create an order

open

shipping

paid

delivered

check
status

change
order

pay

deliver

prepare

create
order

[success]

[failure]cancel

12

Create an order

12

Can use either PUT or POST:

PUT to a new URI
• new URI: http://orinoco.com/order/{order_id}

• client chooses order id

POST to an existing URI
• existing URI: http://orinoco.com/order/

• server chooses order id

13

PUT to a new URI

PUT /order/1234 HTTP/1.1
Host: orinoco.com

Content-Type: application/xml
Content-Length: 107

<order xmlns=“http://schema.orinoco.com/order”>
<items>

</items>
</order>

HTTP/1.1 201 Created
Date: Tue, 29 Oct 2019 17:10:00 GMT

Content-Length: 0

14

POST to an existing URI

POST /order/ HTTP/1.1
Host: orinoco.com

Content-Type: application/xml
Content-Length: 107

<order xmlns=“http://schema.orinoco.com/order”>
<items>

</items>
</order>

HTTP/1.1 201 Created
Location: /order/1234

Date: Tue, 29 Oct 2019 17:10:00 GMT

15

POST to an existing URI
POST /order/ HTTP/1.1
Host: orinoco.com
Content-Type: application/xml
Content-Length: 107

<order xmlns=“http://schema.orinoco.com/order”>
<items>
</items>

</order>

HTTP/1.1 201 Created
Content-Location: /order/1234

Date: Tue, 29 Oct 2019 17:10:00 GMT

<order xmlns=“http://schema.orinoco.com/order”>
<items>
</items>

</order>

16

Change order

open

shipping

paid

delivered

check
status

change
order

pay

deliver

prepare

create
order

[success]

[failure]cancel

17

PUT to an existing URI

PUT /order/1234 HTTP/1.1
Host: orinoco.com

Content-Type: application/xml
Content-Length: 134

<order xmlns=“http://schema.orinoco.com/order”>
<items>

<item quantity=“1” isbn=“1234567890”/>
</items>

</order>

HTTP/1.1 200 OK
Date: Tue, 29 Oct 2019 17:15:00 GMT

18

Conditional PUT

PUT /order/1234 HTTP/1.1
Host: orinoco.com
Content-Type: application/xml
Content-Length: 134
If-Unmodified-Since: Tue, 29 Oct 2019 17:15:00 GMT

<order xmlns=“http://schema.orinoco.com/order”>
<items>
<item quantity=“1” isbn=“1234567890”/>

</items>
</order>

HTTP/1.1 412 Precondition Failed
Date: Tue, 29 Oct 2019 17:20:00 GMT
Content-Length: 0

19

Cancel an order

open

shipping

paid

delivered

check
status

change
order

pay

deliver

prepare

create
order

[success]

[failure]cancel

20

Cancel an order

20

Use DELETE

DELETE is idempotent
• Repeated DELETEs have the same effect as a single DELETE

• Status codes may change (e.g. 404 for subsequent DELETEs)

21

DELETE

DELETE /order/1234 HTTP/1.1
Host: orinoco.com

HTTP/1.1 204 No Content
Content-Length: 0

Date: Tue, 29 Oct 2019 17:25:00 GMT

22

DELETE

DELETE /order/1234 HTTP/1.1
Host: orinoco.com

HTTP/1.1 404 Not Found
Content-Length: 0

Date: Tue, 29 Oct 2019 17:25:00 GMT

23

DELETE

DELETE /order/1234 HTTP/1.1
Host: orinoco.com

HTTP/1.1 410 Gone
Content-Length: 0

Date: Tue, 29 Oct 2019 17:25:00 GMT

24

Payment

open

shipping

paid

delivered

check
status

change
order

pay

deliver

prepare

create
order

[success]

[failure]cancel

25

Richardson Level Three
CRUD isn’t everything!

• Limited application model

• In our scenario, payment doesn’t fit cleanly into the CRUD model

• Encourages tight coupling through URI templates

• Simple pattern

Use hypertext links to indicate protocols
• What are the next steps that you can take?

• What are the next resources?

26

Where are the links?
<order xmlns=“http://schema.orinoco.com/order”>
<items>

<item quantity=“1” isbn=“1234567890”/>
</items>
<status>open</status>

</order>

What can you do next?

27

Media Types

27

application/xml doesn’t have specific link semantics

Can adopt standard hypermedia format (HTML, Atom, etc)
• Widely understood by software agents

• Needs to be adapted to domain

Can create domain-specific format that supports application
• Direct supports domain

• Maintains visibility of messages at the protocol level

• Not widely understood

Use link types to define protocols

28

text/html

Use OPTIONS to determine the right HTTP method to use with links
• Allow: header in response lists allowed methods (for payment, PUT?)

Need to define link types for use with rel: microformats, RDF, etc

<html xmlns="http://www.w3.org/1999/xhtml”>
<body>
<div class="order”>
<ul class="items”>
<li class="item”>
<p class=”isbn">1234567890</p>
<p class="quantity">1</p>

payment

</div>
</body>

</html>

29

application/vnd.orinoco+xml

Proprietary (vendor-specific) media type
• Uses POX for business data

• Uses (e.g.) Atom link elements for hypermedia control

<order xmlns=“http://schema.orinoco.com/order”>
<items>
<item quantity=“1” isbn=“1234567890”/>

</items>
<link href=“https://orinoco.com/payment/1234” rel=“payment”/>
<status>open</status>

</order>

30

Link: header

GET /order/1234 HTTP/1.1
Host: orinoco.com

HTTP/1.1 200 OK
Content-Type: application/vnd.orinoco+xml

Link: <https://orinoco.com/payment/1234>; rel="payment"

<order xmlns=“http://schema.orinoco.com/order”>
<items>
<item quantity=“1” isbn=“1234567890”/>

</items>
</order>

31

Check order status

open

shipping

paid

delivered

check
status

change
order

pay

deliver

prepare

create
order

[success]

[failure]cancel

32

Check order status

32

Use GET
• GET is idempotent

• GET has no side-effects!

33

GET

GET /order/1234 HTTP/1.1
Host: orinoco.com

HTTP/1.1 200 OK
Content-Type: application/xml
Content-Length: 107
Date: Tue, 30 Oct 2018 16:30:00 GMT

<order xmlns=“http://schema.orinoco.com/order”>
<items>
</items>
<status>open</status>

</order>

34

GET

GET /order/9999 HTTP/1.1
Host: orinoco.com

HTTP/1.1 404 Not Found
Content-Length: 0

Date: Tue, 30 Oct 2018 16:30:00 GMT

35

Collections and Elements

35

Extra conventions for talking about collections of elements
• An order can be considered to be a collection

• An item in the order is an element of that collection

Some consensus of semantics of HTTP methods for these

In our case:
• http://orinoco.com/order/ is a collection

• http://orinoco.com/order/{order_id} is an element

36

RESTful Methods for Collections

36

Method Behaviour

GET List the members of the collection (list of URIs)

PUT Replace the entire collection with another collection

POST Create a new member in the collection and automatically assign
it a URI

DELETE Delete the entire collection

37

RESTful Methods for Collection Elements

37

Method Behaviour

GET Retrieve a representation of the specified element

PUT Replace the specified element of the collection, or if it doesn’t
exist create it

POST Treat the specified member as a collection and create a new
element in it

DELETE Delete the specified member of the collection

38

Orinoco Workflow

open

shipping

paid

delivered

GET /order/{order_id}
200 OK

PUT /order/{order_id}
200 OK

PUT /payment/{order_id}

deliver

prepare

POST /order
201 Created

201 Created

400 Bad RequestDELETE /order/{order_id}
204 No Content

Further Reading

39

40

Further Reading
REST in Practice tutorial slides

• http://www.slideshare.net/guilhermecaelum/rest-in-practice

Webber et al (2010) REST in Practice. Sebastopol, CA: O’Reilly Media

Next Lecture: REST Documentation

