


Cross-Origin Resource Sharing
COMP3220 Web Infrastructure

Dr Nicholas Gibbins – nmg@ecs.soton.ac.uk



3

Cross-Site Request Forgery
If user agents allow one origin to talk to a different origin, there may be security issues

• User agent will send cookies if available and applicable

• Privilege escalation attack – confused deputy

dodgysite.org

trustedsite.com

.js

GET

XMLHttpRequest



4

Same-Origin Policy
By default, browsers restrict how a resource from one origin interacts with resources 
from other origins

Barth, A. (2011) The Web Origin Concept. RFC6454. Available online at: https://tools.ietf.org/html/rfc6454

dodgysite.org

trustedsite.com

.js

GET

Fetch/XMLHttpRequest



5

Same-Origin Policy
Two resources have the same origin if:

• Their URIs use the same protocol (i.e. no mixing of http and https)

• Their URIs have the same host

• Their URIs have the same port

(path is ignored for the purposes of determining origin)



6

Same-Origin Policy

• http://example.org/

• http://example.org:80/

• http://example.org/foo

• http://example.org/

• https://example.org/

• http://example.org:8080/

• http://www.example.org/

• http://example.com/

• https://example.org:80/

All the same origin All different origins



7

Same-Origin Policy
By default, the SOP blocks cross-origin reads by the browser

Exception: embedded resources:
• Media (img/audio/video)

• external stylesheets (<link rel="stylesheet" href="..."/>)

• scripts (<script src="..."></script>)

• @font-face (some variability between browsers)

• iframe

Cross-origin POSTS that result from form submission are allowed



8

Cross-Origin Resource Sharing
Mechanism for selectively relaxing the Same-Origin Policy

At a protocol level:
• Adds new headers that let servers indicate which origins may make requests

• Restricts the headers which may be sent in requests (i.e. avoiding taint)

• Restricts the headers which may be received in responses

At an API level:
• CORS requests sent via fetch() API

• Client-side enforcement

• Disallowed request may still result in a message being sent by the browser

• Result of a disallowed request is not sent to the script by the browser

• Reason for CORS error written to browser console, but not available to script



9

CORS requests
Simple requests satisfy all of the following

• GET, HEAD or POST only

• Accept:, Accept-Language:, Content-Type: or Content-Language: are the only 
headers set manually

• Content-Type: is one of text/plain, application/x-www-form-urlencode or 
multipart/formdata only

All other requests trigger a CORS preflight



10

CORS flow

GET/HEAD?

POST?
standard 

Content-Type?
custom

headers?

yes

yes

no

nono

execute fetch()

send OPTIONS

call fetch()

access
granted?

error

yes yes no

yes

no

preflight



11

CORS headers
Client header

• Origin: - like Referer:, but excludes path (automatically added by browser)

• Access-Control-Request-Method: – used in preflight (see later)

• Access-Control-Request-Headers: – used in preflight (see later)

Server headers
• Access-Control-Allow-Origin: – which origins are accepted? (* for any)

• Access-Control-Allow-Methods: – which methods are accepted?

• Access-Control-Allow-Headers: – which headers are accepted?

• Access-Control-Max-Age: – for how long is a preflight check valid?

• Access-Control-Allow-Credentials: – include cookies (etc) in request



12

Simple request example

site-a.org

site-b.org

.js

GET /page.html

fetch("http://site-b.com/bar.json")



13

Simple request example
// in a script in https://site-a.org/page.html

fetch("https://site-b.org/bar.json",
{mode: "cors", 
method: "GET"})

.then(response => {
if (!response.ok) {

throw new Error("HTTP status " + response.status);
}
return response.json();

})
.then(data => console.log(data))
.catch(error => {

console.error("Error: " + error);
});



14

Simple request example

GET /bar.json HTTP/1.1
Host: site-b.org
Origin: https://site-a.org

HTTP/1.1 200 OK
Access-Control-Allow-Origin: https://site-a.org
Vary: origin

...

fetch()

response



15

Simple request example

GET /bar.json HTTP/1.1
Host: site-b.org
Origin: https://site-a.org

HTTP/1.1 200 OK
Access-Control-Allow-Origin: *
Vary: origin

...

fetch()

response



16

Simple request example

GET /bar.json HTTP/1.1
Host: site-b.org
Origin: https://site-c.org

HTTP/1.1 403 Forbidden
Access-Control-Allow-Origin: https://site-a.org/
Vary: origin

...

fetch()

error

Reason: CORS header 'Access-Control-Allow-Origin' does not match 'https://site-c.org/'



17

Preflight requests
Unsafe requests (POST, PUT, DELETE ) require a preflight check

Client sends an OPTIONS message to determine if the intended request may be sent
• Access-Control-Request-*: headers used to express intended request

• Server responds with Access-Control-Allow-*: headers to express permissions



18

Preflight request example
// in a script in https://site-a.org/page.html

fetch("https://site-b.org/qux.json",
{mode: "cors", 
method: "PUT",
body: <...>})

.then(response => {
if (!response.ok) {

throw new Error("HTTP status " + response.status);
}
return response.json();

})
.then(data => console.log(data))
.catch(error => {

console.error("Error: " + error);
});



19

OPTIONS /qux.json HTTP/1.1
Host: site-b.org

Origin: https://site-a.org
Access-Control-Request-Method: PUT

HTTP/1.1 204 No Content
Access-Control-Allow-Origin: https://site-a.org
Access-Control-Allow-Methods: GET, PUT, OPTIONS

PUT /qux.json HTTP/1.1
Host: site-b.org
Origin: https://site-a.org

HTTP/1.1 200 OK
Access-Control-Allow-Origin: https://site-a.org

Access-Control-Allow-Methods: GET, PUT, OPTIONS

fetch()

response



20

OPTIONS /qux.json HTTP/1.1
Host: site-b.org
Origin: https://site-a.org
Access-Control-Request-Method: PUT

HTTP/1.1 204 No Content
Access-Control-Allow-Origin: https://site-a.org
Access-Control-Allow-Methods: GET, OPTIONS

fetch()

error

Reason: Did not find method in CORS header 'Access-Control-Allow-Methods'



21

Further reading 
Barth, A. (2011) The Web Origin Concept. RFC6454

https://tools.ietf.org/html/rfc6454

CORS for developers
https://w3c.github.io/webappsec-cors-for-developers/

HTML5 Fetch API
https://fetch.spec.whatwg.org/

Cross-Origin Resource Sharing at MDN
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS



Next Lecture: Content Security Policy


