


Proxies and Caching
COMP3220 Web Infrastructure

Dr Nicholas Gibbins – nmg@ecs.soton.ac.uk



3

Proxies
Intermediary that acts as server and client

• Receives request from user agent and 
forwards to origin server

• Returns response to user agent

• Can be chained in sequence

Multiple uses:
• Filtering

• Caching

• Content routing

• Anonymising

• Access control

• Transcoding

Fielding, R. and Reschke, J. (2014) Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing. RFC7230. 
Available at: https://tools.ietf.org/html/rfc7230

User 
Agent

Origin
Server

Proxy



4

Proxies and HTTP
When sending requests via a proxy, user agent replaces the path in the request line 
with the full URI

Proxies add Via: headers to all messages they send
• HTTP version, hostname of proxy
• Append to existing header if chaining proxies

GET http://example.org/ HTTP/1.1
Host: example.org

URI to be proxied



5

GET http://example.org/ HTTP/1.1
Host: example.org

HTTP/1.1 200 OK

...

GET / HTTP/1.1
Host: example.org
Via: HTTP/1.1 proxy.net

HTTP/1.1 200 OK
Via: HTTP/1.1 proxy.net

...



6

Tunnels
But what about HTTPS?

• TLS guarantees end-to-end encryption of both message body and headers

• Proxies can't understand the request

CONNECT method establishes a tunnel to the destination origin server
• Proxy will forward all subsequent packets in both directions

CONNECT example.org:443 HTTP/1.1
Host: example.org:443



7

Proxy Autoconfiguration
proxy.pac file containing sandboxed JavaScript defining FindProxyForURL()

• Configured in browser (specify URI of proxy.pac)

• Configured via DHCP (option 252, containing URI of proxy.pac)

• Configured via DNS (looks for host named wpad, requests wpad.dat)

• Note: common practice, not a (formal) standard

function FindProxyForURL(url, host) { 
// ... 

}

Return values:
• DIRECT
• PROXY host:port



8

Caching
Recall the following REST constraint: 
response data must be labelled as 
cacheable or non-cacheable

In practice, both user agents and proxies 
may cache representations

• User agent private cache

• Proxy shared cache

How do we know what to cache?

How do we avoid stale data?

Fielding, R. et al (2014) Hypertext Transfer Protocol (HTTP/1.1): Caching. RFC7234. Available at: https://tools.ietf.org/html/rfc7234

User 
Agent

Origin
Server

Proxy

CacheCache



9

Key concepts
Freshness/staleness

• How long is it since the representation was generated by the origin server?

• Is there a lifetime (or expiration time) associated with the representation?

Revalidation
• If a cache contains a stale representation, we need to refresh it by either:

1. Checking that it is still the same as the representation served by the origin server, or

2. Fetching a new (fresh) representation with which to replace it



10

Cache headers
Age: seconds

• Sent by a proxy server to indicate how long ago a representation was generated by the 
origin server

Expires: timestamp

• Indicates when a representation should be considered stale

Cache-Control: directive, directive, ...

• Specifies caching behaviour, may be sent by user agents, proxies and origin servers



11

Request Cache-Control: directives
no-cache

• Client will not accept cached representations that have not been validated

no-store

• No part of this request or response may be cached 

max-age=seconds

• Client will not accept cached representations more than seconds old

max-stale=seconds

• Client will accept cached representations that are up to seconds past their freshness

min-fresh=seconds

• Client will accept cached representations that will remain fresh for at least seconds

no-transform

• Intermediary must not transform the representation (note: orthogonal to caching)



12

Response Cache-Control: directives
no-cache

• Representations may not be reused without being revalidated

no-store

• No part of this request or response may be cached 

must-revalidate

• Stale representations may not be reused without being revalidated

max-age=seconds

• Representation is to be considered stale after seconds

public

• Representation may be stored in a shared cache and used for other users

private

• Representation may not be used for other users



13

GET http://example.org/ HTTP/1.1
Host: example.org

HTTP/1.1 200 OK
Cache-Control: max-age=600
ETag: "39d5-5943f8fdc2607"

GET / HTTP/1.1
Host: example.org

HTTP/1.1 200 OK
Cache-Control: max-age=600

Age: 0
ETag: "39d5-5943f8fdc2607"

http://example.org/
max-age=600, age=0,

etag=39d5-5943f8fdc2607



14

GET http://example.org/ HTTP/1.1
Host: example.org

HTTP/1.1 200 OK
Cache-Control: max-age=600
ETag: "39d5-5943f8fdc2607"
Age: 120

http://example.org/
max-age=600, age=120,

etag=39d5-5943f8fdc2607



15

GET http://example.org/ HTTP/1.1
Host: example.org

HTTP/1.1 200 OK
Cache-Control: max-age=600
ETag: "4b4f-77a6c3ab117a2"

GET / HTTP/1.1
Host: example.org

If-None-Match: "39d5-5943f8fdc2607"

HTTP/1.1 200 OK
Cache-Control: max-age=600
Age: 0
ETag: "4b4f-77a6c3ab117a2"

http://example.org/
max-age=600, age=0,

etag=4b4f-77a6c3ab117a2

http://example.org/
max-age=600, age=720,

etag=39d5-5943f8fdc2607



16

GET http://example.org/ HTTP/1.1
Host: example.org

HTTP/1.1 304 Not Modified
Cache-Control: max-age=600
ETag: "39d5-5943f8fdc2607"

GET / HTTP/1.1
Host: example.org

If-None-Match: "39d5-5943f8fdc2607"

HTTP/1.1 200 OK
Cache-Control: max-age=600
Age: 0
ETag: "39d5-5943f8fdc2607"

http://example.org/
max-age=600, age=0,

etag=39d5-5943f8fdc2607

http://example.org/
max-age=600, age=720,

etag=39d5-5943f8fdc2607



17

Caching and content negotiation
We're caching representations, but there 
may be multiple representations of a 
given resource

How do when distinguish between the 
different cached representations of a 
resource?

Cached representations record the values 
of the headers listed in the Vary: header

today’s BBC 
weather forecast 
for Southampton

Resource
re
pr
es
en
ts

Metadata: 
Content-Type: text/html

Data:
<html>
<head>
<title>BBC Weather –
Southampton</title>
...
</html>

Representation

represents

Representation

Metadata: 
Content-Type: video/mp4

Data:



18

GET http://example.org/ HTTP/1.1
Host: example.org
Accept: text/html

HTTP/1.1 200 OK
Location: http://example.org/
Content-Type: text/html
Vary: accept, accept-language

GET / HTTP/1.1
Host: example.org
Accept: text/html

HTTP/1.1 200 OK
Content-Type: text/html
Vary: accept, accept-language

http://example.org/
max-age=600, age=0, text/html



19

GET http://example.org/ HTTP/1.1
Host: example.org
Accept: text/plain

HTTP/1.1 200 OK
Content-Type: text/plain

Vary: accept, accept-language

GET / HTTP/1.1
Host: example.org
Accept: text/plain

HTTP/1.1 200 OK
Content-Type: text/plain
Vary: accept, accept-language

http://example.org/
max-age=600, age=120, text/html

http://example.org/
max-age=600, age=120, text/html

max-age=600, age=0, text/plain



20

Further reading
Fielding, R. and Reschke, J. (2014) Hypertext Transfer Protocol (HTTP/1.1): Message 
Syntax and Routing. RFC7230.

https://tools.ietf.org/html/rfc7230

Fielding, R. et al (2014) Hypertext Transfer Protocol (HTTP/1.1): Caching. RFC7234.
https://tools.ietf.org/html/rfc7234



Next lecture: Authentication and 
Authorisation


