


The Architecture of 
the World Wide Web
COMP3220 Web Infrastructure

Dr Nicholas Gibbins – nmg@ecs.soton.ac.uk



3

The evolving architecture of the Web
In its earliest days, the Web was defined primarily in terms of its implementation

• HTTP was what Web browsers and Web servers spoke

• HTML was what Web browsers read

As the Web grew, this became an increasing problem
• Network issues with early HTTP affected scalability

• Nature of application interactions on the Web changed (images, etc)

• Limited support for shared caching

The Web architecture addresses this by answering the following questions:
• How do all the Web components fit together in a consistent manner?

• How should future components fit together with the rest of the Web?



4

To properly understand the Web architecture, 
we need to understand what the Web is

To properly understand what the Web is, 
we need to understand how the Web came to be



5

What is the Web?

5

The Web is a distributed information system that provides access 
to hypertext documents and other objects of interest

We have a general name for these objects of interest: 

resources 



6

What is a resource?
The earliest formal uses of the term "resource" in an Internet context date from 1994

• Synonymous with "file" or "network object" 

• Earliest reference to resources in IETF RFCs is in RFC1580 from March 1994

• First formal definition of Uniform Resource Identifiers in RFC1630 from June 1994

• Earlier documents submitted by Berners-Lee to IETF talked about documents

EARN Staff (1994) Guide to Network Resource Tools. RFC1580. Available online at https://tools.ietf.org/html/rfc1580
Berners-Lee, T. (1994) Universal Resource Identifiers in WWW: A Unifying Syntax for the Expression of Names and Addresses of Objects on the 
Network as used in the World-Wide Web. RFC1630. Available online at https://tools.ietf.org/html/rfc1630



7

What is a resource?
“Familiar examples [of resources] include an electronic document, an image, a source 
of information with a consistent purpose (e.g., ‘today's weather report for Los 
Angeles’), a service (e.g., an HTTP-to-SMS gateway), and a collection of other resources. 
A resource is not necessarily accessible via the Internet; e.g., human beings, 
corporations, and bound books in a library can also be resources. Likewise, abstract 
concepts can be resources, such as the operators and operands of a mathematical 
equation, the types of a relationship (e.g., ‘parent’ or ‘employee’), or numeric values 
(e.g., zero, one, and infinity).”

Berners-Lee, T. et al (2005) Uniform Resource Identifier (URI): Generic Syntax. RFC3986. Available online at https://tools.ietf.org/html/rfc3986 7



8

What is a resource?
“Familiar examples [of resources] include an electronic document, an image, a source 
of information with a consistent purpose (e.g., ‘today's weather report for Los 
Angeles’), a service (e.g., an HTTP-to-SMS gateway), and a collection of other resources. 
A resource is not necessarily accessible via the Internet; e.g., human beings, 
corporations, and bound books in a library can also be resources. Likewise, abstract 
concepts can be resources, such as the operators and operands of a mathematical 
equation, the types of a relationship (e.g., ‘parent’ or ‘employee’), or numeric values 
(e.g., zero, one, and infinity).”

A resource may change over time yet still be considered the same resource
• The Ship of Theseus/my grandfather's axe/Trigger's broom

Berners-Lee, T. et al (2005) Uniform Resource Identifier (URI): Generic Syntax. RFC3986. Available online at https://tools.ietf.org/html/rfc3986 8



9

What is a resource?
“Familiar examples [of resources] include an electronic document, an image, a source 
of information with a consistent purpose (e.g., ‘today's weather report for Los 
Angeles’), a service (e.g., an HTTP-to-SMS gateway), and a collection of other resources. 
A resource is not necessarily accessible via the Internet; e.g., human beings, 
corporations, and bound books in a library can also be resources. Likewise, abstract 
concepts can be resources, such as the operators and operands of a mathematical 
equation, the types of a relationship (e.g., ‘parent’ or ‘employee’), or numeric values 
(e.g., zero, one, and infinity).”

A resource may not be something which can be "retrieved"
• Can still be interacted with over the network

Berners-Lee, T. et al (2005) Uniform Resource Identifier (URI): Generic Syntax. RFC3986. Available online at https://tools.ietf.org/html/rfc3986 9



10

What is a resource?
“Familiar examples [of resources] include an electronic document, an image, a source 
of information with a consistent purpose (e.g., ‘today's weather report for Los 
Angeles’), a service (e.g., an HTTP-to-SMS gateway), and a collection of other resources. 
A resource is not necessarily accessible via the Internet; e.g., human beings, 
corporations, and bound books in a library can also be resources. Likewise, abstract 
concepts can be resources, such as the operators and operands of a mathematical 
equation, the types of a relationship (e.g., ‘parent’ or ‘employee’), or numeric values 
(e.g., zero, one, and infinity).”

A resource may not even be something that's "on the Internet"

Berners-Lee, T. et al (2005) Uniform Resource Identifier (URI): Generic Syntax. RFC3986. Available online at https://tools.ietf.org/html/rfc3986 10



1111

today’s BBC 
weather forecast 
for Southampton

Resource



12

Architectural Bases of the Web

12

The notion of a resource is central to the architecture of the Web

We need to be able to:
• identify them

• represent them

• interact with them

These are orthogonal considerations



13

Identification
We need a way to identify resources

• Machines need to be able to resolve those 
identifiers (to "fetch" the resource)

• Humans should (ideally) be able to read 
and write those identifiers

Uniform Resource Identifiers
• Arguably the single most important 

contribution of the Web

1
3

today’s BBC 
weather forecast 
for Southampton

Resource

http://www.bbc.co.uk/weather/2637487

URI

id
en
tif
ies



14

Representation
A representation is data that encodes 
information about resource state.

Representations do not necessarily 
describe the resource, or portray a 
likeness of the resource, or represent the 
resource in other senses of the word 
"represent".

14

today’s BBC 
weather forecast 
for Southampton

Resource

Metadata: 
Content-Type: text/html

Data:
<html>
<head>
<title>BBC Weather –
Southampton</title>
...
</html>

Representation

represents



15

Representation
A representation is data that encodes 
information about resource state

Representations do not necessarily 
describe the resource, or portray a 
likeness of the resource, or represent the 
resource in other senses of the word 
"represent"

May be multiple representations of a 
given resource

15

today’s BBC 
weather forecast 
for Southampton

Resource
re
pr
es
en
ts

Metadata: 
Content-Type: text/html

Data:
<html>
<head>
<title>BBC Weather –
Southampton</title>
...
</html>

Representation

represents

Representation

Metadata: 
Content-Type: video/mp4

Data:



16

Interaction
Resource representations are transmitted 
using interaction protocols.

The interactions between Web agents and 
resources are defined in terms of 
protocols that specify the exchange of 
messages

161
6

today’s BBC 
weather forecast 
for Southampton

Resource

http://www.bbc.co.uk/weather/2637487

URI

id
en
tif
ies

Metadata: 
Content-Type: text/html

Data:
<html>
<head>
<title>BBC Weather –
Southampton</title>
...
</html>

Representation

represents

accesses



17

Representational State Transfer
The core Web architecture was heavily informed by the work of Roy Fielding

• Co-author of HTTP and URI RFCs

• Co-founder of the Apache Software Foundation

Fielding defined an architectural style known as representational state transfer or REST
• What data elements exist?

• What components (i.e. processing elements) exist?

• What constraints apply to the interactions between components?

Fielding, R.T. (2000) Architectural Styles and the Design of Network-based Software Architectures. PhD Thesis. University of California at Irvine. 
Available online at http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm



18

Data Elements
Resources

Identifiers (URIs, etc)

Representations (HTML, etc)

Metadata (resource, representation, control)



19

Components

19

Origin servers
• Definitive source of resource representations

• Web server: Apache, nginx, IIS, etc

Gateways
• Intermediary selected by origin server

• Often used to integrate legacy services

Proxies
• Intermediary selected by user agent

• Filter, cache, etc

User agents
• Browser: Chrome, IE, Safari, Firefox, etc



20

Components

User 
Agent

Origin
Server

Proxy

Cache

Gateway



21

Constraints
• Client-Server Separation of concerns:

• user interface (client)

• data storage (server)

+ Improves portability of user interface

+ Improves scalability by simplifying 
server

+ Allows components to evolve separately



22

Constraints
• Client-Server

• Stateless

Each request from client to server must 
contain all of the information necessary to 
understand the request

• No context is stored on the server
• Session state is kept entirely on the client

+ Improves visibility 
(can consider each request in isolation)

+ Improves reliability 
(easier to recover from partial failures)

+ Improves scalability 
(reduces server resource usage)

– Increases per-interaction overhead



23

Constraints
• Client-Server

• Stateless

• Caching

Response data must be labelled as 
cacheable or non-cacheable

• If cacheable, client may reuse response 
data for later requests

+ Allows some interactions to be 
eliminated

+ Reduces average latency of interactions

– Stale data reduces reliability



24

Constraints
• Client-Server

• Stateless

• Caching

• Uniform Interface

Uniform interface between components
• Identification of resources

• Manipulation of resources through 
representations

• Self-descriptive messages

• Hypermedia as the engine of application 
state (HATEOAS)

+Improves visibility of interactions

+Encourages independent evolvability

-Degrades efficiency 
(depending on optimisation)



25

Constraints
• Client-Server

• Stateless

• Caching

• Uniform Interface

• Layered

System components have no knowledge 
of components beyond those with which 
they directly interact

• Encapsulate legacy services

• Introduce intermediaries

+Limits system complexity

+Improves scalability 
(load balancing)

-Adds latency and overhead 
(offset by caching)



26

Constraints
• Client-Server

• Stateless

• Caching

• Uniform Interface

• Layered

• Code on Demand (optional)

Client functionality extended by 
downloading and executing code

• Applets

• Scripts

+Improves extensibility

-Reduces visibility



27

Further Reading

27

Jacobs, I. and Walsh, N. (2004) Architecture of the World Wide Web, Volume One. W3C 
Recommendation.

http://www.w3.org/TR/webarch/

Fielding, R.T. (2000) Architectural Styles and the Design of Network-based Software 
Architectures. PhD Thesis. University of California at Irvine. Chapters 4-5.

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm



Next Lecture: Identification


