


Hypertext Transfer Protocol
COMP3220 Web Infrastructure

Dr Nicholas Gibbins – nmg@ecs.soton.ac.uk



3

Interaction

3

today’s BBC 
weather forecast 
for Southampton

Resource

http://www.bbc.co.uk/weather/2637487

URI

identifi
es

Metadata: 
Content-Type: text/html

Data:
<html>
<head>
<title>BBC Weather –
Southampton</title>
...
</html>

Representation
represents

yields on dereference



4

HTTP in a Nutshell
Application protocol for distributed hypermedia

Client and server exchange representations by sending request/response messages

server

please send me 
resource X

client server
here you go!

X



5

The evolution of HTTP

5

• First documented in 1991 (HTTP/0.9)

• HTTP/1.0 introduced in 1996 (RFC1945)

• HTTP/1.1 introduced in 1997 (RFC2068)

• HTTP/1.1 updated in 1999 (RFC2616)

• HTTP/1.1 last updated in 2014 (RFC7230-7235)

• HTTP/2 introduced in 2015 (RFC7450)

• HTTP/3 in development



6

Anatomy of an HTTP URI

6

http://<host><:port></path>?<query>#<fragment>

Examples:

• http://example.com/
• http://example.com:80/
• http://example.com/users/nmg
• http://example.com/?search=foo
• http://example.com/users/nmg#contact



7

Typical HTTP message exchange
Consider a request for a representation of http://example.org/

client server
example.org

GET /

the path of the resource

200 OK



8

Minimal HTTP/1.1 Exchange

8

GET / HTTP/1.1
Host: example.org

HTTP/1.1 200 OK
Content-Type: text/html

<html>
<head>
<title>Example, Inc. Homepage</title>

</head>

<body><h1>Welcome to Example!</h1>...</body>
</html>



9

HTTP Requests

9

GET / HTTP/1.1
Host: example.org

method

path

HTTP version

headers



10

Exercise: Requests



11

Using curl
curl is a command-line tool for retrieving URIs - we’ll use it to study HTTP interactions

May already be installed on your machine – if not, download from 
https://curl.haxx.se/

curl –v [uri]

• verbose mode – writes HTTP interactions to stderr

• Redirect stderr to stdout and use less to page through output

• e.g. curl –v https://www.google.com/ 2>&1 | less

• Lines prefixed with “>” were sent by the client (i.e. curl)

• Lines prefixed with “<“ were sent by the remote server



12

Exercise: Requests
Use curl to study the following request:

curl –v http://www.google.com/

Use curl to study the following request:

curl –v https://www.google.com/

(we’ll cover TLS in a future lecture)



13

Using nc (netcat)
nc (netcat) is a command-line tool for sending data from stdin to a port on a host

nc [hostname] [port]

Try: nc –c test.gark.net 80 and type the following minimal GET request:

GET / HTTP/1.1
Host: test.gark.net

(you’ll need to type an extra return after the Host: header)



14

Using openssl
openssl is a command-line toolkit that implements TLS (used by https)

openssl s_client –host [hostname] –port [port]

Try: openssl s_client –crlf –host www.w3.org –port 443 

and then type the following minimal GET request very quickly (<5s):

GET / HTTP/1.1
Host: www.w3.org

(as before, you’ll need to type an extra return after the Host: header)



15

HTTP Methods

15

GET request a representation of a resource

HEAD request the body-less (i.e. headers only) response from a GET request

POST request that a representation be accepted as a new subordinate of the 
specified resource (effectively, create a new resource)

PUT upload a representation of the specified resource

DELETE delete the specified resource

OPTIONS request information about the methods supported by a resource

(also TRACE, CONNECT, PATCH, but these are far less common)

Fielding, R.T. and Reschke, J. (2014) Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. RFC7231. pp.24-32. 
Available at: https://tools.ietf.org/html/rfc7231



16

Safety and idempotency
A method is safe if it does not change the state of the resource

A method is idempotent if a request can be made once or more than once while leaving 
the resource in the same final state

• All safe methods are idempotent (because the state doesn’t change)

• Not all idempotent methods are safe

Method Safe? Idempotent?

GET Y Y

HEAD Y Y

POST N N

PUT N Y

DELETE N Y

OPTIONS Y Y



17

Exercise: Methods



18

Exercise: Methods

curl –X [method] [uri]

• Generates a HTTP request using the specified method

Use curl to study the following requests using different HTTP methods:

curl –v –X GET https://www.debian.org/ 
curl –v –X HEAD https://www.debian.org/
curl –v –X DELETE https://www.debian.org/



19

Common HTTP request headers

19

• Accept: specify desired media type of response

• Accept-Language: specify desired language of response

• Date: date/time at which the message was originated

• Host: host and port number of requested resource

• Referer: URI of previously visited resource

• User-Agent: identifier string for Web browser or user agent

Of these headers, only Host: is mandatory

(we’ll study Accept: and Accept-Language: in more detail next lecture)

Fielding, R.T. and Reschke, J. (2014) Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. RFC7231. pp.33-46. 
Available at: https://tools.ietf.org/html/rfc7231



20

HTTP Responses

HTTP/1.1 200 OK
Content-Type: text/html

<html>
<head>
<title>Example, Inc. Homepage</title>

</head>

<body><h1>Welcome to Example!</h1>...</body>
</html>

HTTP version

status code

response phrase headers

body

metadata

data



21

HTTP Status Codes

21

1xx informational message

2xx success

3xx redirection

4xx client error

5xx server error 

Fielding, R.T. and Reschke, J. (2014) Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. RFC7231. pp.47-64. 
Available at: https://tools.ietf.org/html/rfc7231



22

200 OK

22

The request has succeeded. 

For a GET request, the response body contains a representation of the specified 
resource

The Content-Location: header indicates a more specific identifier for the 
representation in the response body (see lecture on content negotiation)

For a POST request, the response body contains a description of the result of the action

The Content-Location: header indicates that the response body is available (for 
future access with GET) at the given URI



23

201 Created

23

The request has been fulfilled and resulted in a new resource being created.

Typically results from a POST or PUT request

The Location: header indicates the resource created by the request

The Content-Location: header (if different from Location:) indicates that the body 
of the response is a representation reporting on the requested action's status and that 
the same report is available (for future access with GET) at the given URI



24

204 No Content

The request has been fulfilled, but there is no additional content to send in the 
response.

Used as the response to an OPTIONS request, with an appropriate Allow: header

OPTIONS / HTTP/1.1
Host: example.org

HTTP/1.1 204 No Content
Allow: GET, HEAD



25

300 Multiple Choices

25

Multiple representations of the requested resource exist, and the client is provided 
with negotiation so that it may select a preferred representation

(we’ll cover this in the lecture on content negotiation)



26

301 Moved Permanently

26

The requested resource has been assigned a new permanent URI and any future 
references to this resource should use one of the returned URIs.

New permanent URI given using the Location: header

GET / HTTP/1.1
Host: example.org

HTTP/1.1 301 Moved Permanently
Location: http://www.example.org/



27

302 Found

The requested resource resides temporarily under a different URI. Since the redirection 
might be altered on occasion, the client should continue to use the Request-URI for 
future requests.

Temporary URI given using the Location: header

GET / HTTP/1.1
Host: example.org

HTTP/1.1 302 Found
Location: http://www.example.org/



28

303 See Other

The server is redirecting the user agent to a different resource, using Location:
• Difference in typical usage, depending on the original HTTP method

• Commonly used as a response to a POST request that that was sent as a form submission

POST /form HTTP/1.1
Host: example.org
Content-Type: multipart/form-data
...

HTTP/1.1 303 See Other
Location: http://example.org/result

GET /result HTTP/1.1
Host: example.org



29

303 See Other

When used in response to a GET request, indicates that the server does not have a 
representation of the requested resource, but that it is able to indicate a different 
resource which is descriptive of the target resource

GET /people/alice HTTP/1.1
Host: example.org

HTTP/1.1 303 See Other
Location: http://example.org/bio/alice.html

GET /bio/alice.html HTTP/1.1
Host: example.org



30

304 Not Modified

A conditional GET or HEAD request has been received and would have resulted in a 200 
OK response if it were not for the fact that the condition evaluated to false.

(we’ll look at this in the lecture on conditional requests)



31

307 Temporary Redirect

The requested resource resides temporarily under a different URI. The user agent must 
not change the request method if it performs an automatic redirection to that URI

Temporary URI given using the Location: header



32

308 Permanent Redirect

The requested resource has been assigned a new permanent URI and any future 
references to this resource ought to use that URI. The user agent must not change the 
request method if it performs an automatic redirection to that URI.

Permanent URI given using the Location: header



33

Notes on redirects
What’s the difference between 301 Moved Permanently and 308 Permanent Redirect?

What’s the difference between 302 Found and 307 Temporary Redirect?

As originally specified, 301/302 didn’t permit the user agent to change method for the 
subsequent request (that’s what 303 is for)

Browser manufacturers ignored this; as implemented, 301/302 can change methods 
from POST to GET

307/308 introduced for when you want to prevent a user agent from changing 
methods

(this is why standards work is so fraught)



34

401 Unauthorized

34

The request requires user authentication.

The response MUST include a WWW-Authenticate: header field containing a challenge 
applicable to the requested resource (username/password, for example)



35

403 Forbidden

35

The server understood the request, but is refusing to fulfill it. Authorisation will not 
help and the request SHOULD NOT be repeated.



36

404 Not Found

36

The server has not found anything matching the Request-URI. No indication is given of 
whether the condition is temporary or permanent.



37

405 Method Not Allowed

The method specified in the Request-Line is not allowed for the resource identified by 
the Request-URI. The response must include an Allow: header containing a list of 
valid methods for the requested resource.

DELETE / HTTP/1.1
Host: example.org

HTTP/1.1 405 Method Not Allowed
Allow: GET, HEAD



38

412 Precondition Failed

38

One or more conditions given in the request header fields evaluated to false when 
tested on the server.

(as with 304 Not Modified, we’ll look at this in the lecture on conditional requests)



39

Common HTTP response headers

39

• Allow: lists methods supported by request URI (see OPTIONS method)

• Content-Language: language of representation

• Content-Type: media type of representation

• Content-Length: length in bytes of representation

• Content-Location: response body is a representation of the specified resource

• Date: date/time at which the message was originated

• Expires: date/time after which response is considered stale

• Cache-Control: used with Expires: for caching

• ETag: entity tag – identifier for version of resource 

• Last-Modified: date/time at which representation was last changed

• Link: contains links for the resource

Fielding, R.T. and Reschke, J. (2014) Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content. RFC7231. pp.64-73. 
Available at: https://tools.ietf.org/html/rfc7231



40

Further Reading

40

Fielding, R.T. and Reschke, J. (2014) Hypertext Transfer Protocol (HTTP/1.1): Semantics 
and Content. RFC7231.

https://tools.ietf.org/html/rfc7231



Next Lecture: Content Negotiation


