Topology of Networks and Vata

Ruben Sanchez-Garcia Mathematical Sciences

WebScience MSc Guest Lecture 8 December 2016

1-slide summary

- * I use TOPOLOGY to study complex systems, and data
- * luse networks, and their higher-dimensional analogues, complexes, to represent shape
- * Pata: mostly interested in unsupervised methods, particularly clustering, and ranking

Topology

- * Mathematical study of 'shapes'
- * Similar to Geometry, but objects can be continuously deformed

http://www.renyi.mta.hu/~szilard/topology/CUBE=SPHERE.jpeg

http://atomsandvoid.files.wordpress.com/2011/02/topology1.png?w=570

Seven bridges of Könisberg

Image by Bogdan Giuscă (Wikipedia)

Euler (1735)

Viscrete structures in Topology

* Complexes: Discrete representations of continuous shapes

Image by Ag2gaeh (Wikipedia) Image: Mathematica

* Example: Networks

biological

technological

socio-technological

abstract complex

From Pata to Complexes

- * PATA = data points x_i with pairwise distances (or similarities) s_{ij}
- * Example: point clouds in high-dimensional space

Topological Features

* Example: Euler characteristics of a complex

χ = #nodes - #links + #faces

$$\chi()$$
 $= 2$

$$\chi() = 0$$

Etc.

Topological Pata Analysis

Clustering/Community detection

* Spectral clustering: network eigenvectors reveal clustering structure

Topological Ranking

- * Current WebScience student Conrad D'Souza
- * Ranking is a key activity that permeates the Web
- * Challenges: missing data, inconsistencies
- * Topological ranking (HodgeRank): global ranking & explains residual error
- * Case study: horse racing data

1-slide summary (again!)

- * I use TOPOLOGY to study complex systems, and data
- * I use networks, and their higher-dimensional analogues, complexes, to represent shape
- * Pata: mostly interested in unsupervised methods, particularly clustering, and ranking

Want to know more?

[1] G. Carlsson, Topology and data, Bulletin of the American Mathematical Society, 2009.

[21 JavaPlex: Persistent homology and topological data analysis library http://javaplex.github.io/javaplex/

[3] Mapper in Python (Daniel Müllner) http://danifold.net/mapper/index.html

[4] Ayasdi http://www.ayasdi.com/

[5] I. J. Good, The Philosophy of Exploratory Pata Analysis, Philosophy of Science, 1983.

[6] M. Nicolau, A. J. Levine, and G. Carlsson, Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival, PNAS, 2011.

[7] J. M. Chan, G. Carlsson, and R. Rabadan, Topology of viral evolution, PNAS, 2013.

[81 Sayan Mukherjee: https://stat.duke.edu/~sayan/Publications.html

or talk to me

R.Sanchez-Garcia@soton.ac.uk
Office 8023 in Building 54

Thank you