
7.2.4 Content Distribution Networks
Today, many Internet video companies are distributing on-demand multi-Mbps
streams to millions of users on a daily basis. YouTube, for example, with a library
of hundreds of millions of videos, distributes hundreds of millions of video streams
to users around the world every day [Ding 2011]. Streaming all this traffic to loca-
tions all over the world while providing continuous playout and high interactivity is
clearly a challenging task.

For an Internet video company, perhaps the most straightforward approach to
providing streaming video service is to build a single massive data center, store all
of its videos in the data center, and stream the videos directly from the data center to
clients worldwide. But there are three major problems with this approach. First, if
the client is far from the data center, server-to-client packets will cross many com-
munication links and likely pass through many ISPs, with some of the ISPs possibly
located on different continents. If one of these links provides a throughput that is
less than the video consumption rate, the end-to-end throughput will also be below
the consumption rate, resulting in annoying freezing delays for the user. (Recall
from Chapter 1 that the end-to-end throughput of a stream is governed by the
throughput in the bottleneck link.) The likelihood of this happening increases as the
number of links in the end-to-end path increases. A second drawback is that a popu-
lar video will likely be sent many times over the same communication links. Not
only does this waste network bandwidth, but the Internet video company itself will
be paying its provider ISP (connected to the data center) for sending the same bytes
into the Internet over and over again. A third problem with this solution is that a sin-
gle data center represents a single point of failure—if the data center or its links to
the Internet goes down, it would not be able to distribute any video streams.

In order to meet the challenge of distributing massive amounts of video data to
users distributed around the world, almost all major video-streaming companies
make use of Content Distribution Networks (CDNs). A CDN manages servers in
multiple geographically distributed locations, stores copies of the videos (and other
types of Web content, including documents, images, and audio) in its servers, and
attempts to direct each user request to a CDN location that will provide the best user
experience. The CDN may be a private CDN, that is, owned by the content provider
itself; for example, Google’s CDN distributes YouTube videos and other types of
content. The CDN may alternatively be a third-party CDN that distributes content
on behalf of multiple content providers; Akamai’s CDN, for example, is a third-
party CDN that distributes Netflix and Hulu content, among others. A very readable
overview of modern CDNs is [Leighton 2009].

CDNs typically adopt one of two different server placement philosophies
[Huang 2008]:

• Enter Deep. One philosophy, pioneered by Akamai, is to enter deep into the
access networks of Internet Service Providers, by deploying server clusters in
access ISPs all over the world. (Access networks are described in Section 1.3.)

602 CHAPTER 7 • MULTIMEDIA NETWORKING



Akamai takes this approach with clusters in approximately 1,700 locations. The
goal is to get close to end users, thereby improving user-perceived delay and
throughput by decreasing the number of links and routers between the end user and
the CDN cluster from which it receives content. Because of this highly distributed
design, the task of maintaining and managing the clusters becomes challenging.

GOOGLE’S NETWORK INFRASTRUCTURE

To support its vast array of cloud services—including search, gmail, calendar,
YouTube video, maps, documents, and social networks—Google has deployed an
extensive private network and CDN infrastructure. Google’s CDN infrastructure has
three tiers of server clusters:

• Eight “mega data centers,” with six located in the United States and two locat-
ed in Europe [Google Locations 2012], with each data center having on the
order of 100,000 servers. These mega data centers are responsible for serving
dynamic (and often personalized) content, including search results and gmail
messages.

• About 30 “bring-home” clusters (see discussion in 7.2.4), with each cluster con-
sisting on the order of 100–500 servers [Adhikari 2011a]. The cluster loca-
tions are distributed around the world, with each location typically near multi-
ple tier-1 ISP PoPs. These clusters are responsible for serving static content,
including YouTube videos [Adhikari 2011a].

• Many hundreds of “enter-deep” clusters (see discussion in 7.2.4), with each
cluster located within an access ISP. Here a cluster typically consists of tens of
servers within a single rack. These enter-deep servers perform TCP splitting (see
Section 3.7) and serve static content [Chen 2011], including the static portions
of Web pages that embody search results.

All of these data centers and cluster locations are networked together with Google’s
own private network, as part of one enormous AS (AS 15169). When a user makes a
search query, often the query is first sent over the local ISP to a nearby enter-deep
cache, from where the static content is retrieved; while providing the static content to
the client, the nearby cache also forwards the query over Google’s private network to
one of the mega data centers, from where the personalized search results are retrieved.
For a YouTube video, the video itself may come from one of the bring-home caches,
whereas portions of the Web page surrounding the video may come from the nearby
enter-deep cache, and the advertisements surrounding the video come from the data
centers. In summary, except for the local ISPs, the Google cloud services are largely
provided by a network infrastructure that is independent of the public Internet.

CASE STUDY

7.2 • STREAMING STORED VIDEO 603



• Bring Home. A second design philosophy, taken by Limelight and many other
CDN companies, is to bring the ISPs home by building large clusters at a smaller
number (for example, tens) of key locations and connecting these clusters using
a private high-speed network. Instead of getting inside the access ISPs, these
CDNs typically place each cluster at a location that is simultaneously near the
PoPs (see Section 1.3) of many tier-1 ISPs, for example, within a few miles of
both AT&T and Verizon PoPs in a major city. Compared with the enter-deep
design philosophy, the bring-home design typically results in lower maintenance
and management overhead, possibly at the expense of higher delay and lower
throughput to end users.

Once its clusters are in place, the CDN replicates content across its clusters. The
CDN may not want to place a copy of every video in each cluster, since some videos
are rarely viewed or are only popular in some countries. In fact, many CDNs do not
push videos to their clusters but instead use a simple pull strategy: If a client
requests a video from a cluster that is not storing the video, then the cluster retrieves
the video (from a central repository or from another cluster) and stores a copy
locally while streaming the video to the client at the same time. Similar to Internet
caches (see Chapter 2), when a cluster’s storage becomes full, it removes videos that
are not frequently requested.

CDN Operation

Having identified the two major approaches toward deploying a CDN, let’s now
dive down into the nuts and bolts of how a CDN operates. When a browser in 
a user’s host is instructed to retrieve a specific video (identified by a URL), the
CDN must intercept the request so that it can (1) determine a suitable CDN
server cluster for that client at that time, and (2) redirect the client’s request to 
a server in that cluster. We’ll shortly discuss how a CDN can determine a suitable
cluster. But first let’s examine the mechanics behind intercepting and redirecting
a request.

Most CDNs take advantage of DNS to intercept and redirect requests; an inter-
esting discussion of such a use of the DNS is [Vixie 2009]. Let’s consider a simple
example to illustrate how DNS is typically involved. Suppose a content provider,
NetCinema, employs the third-party CDN company, KingCDN, to distribute its
videos to its customers. On the NetCinema Web pages, each of its videos is assigned
a URL that includes the string “video” and a unique identifier for the video itself; for
example, Transformers 7 might be assigned http://video.netcinema.com/6Y7B23V.
Six steps then occur, as shown in Figure 7.4:

1. The user visits the Web page at NetCinema.
2. When the user clicks on the link http://video.netcinema.com/6Y7B23V, the

user’s host sends a DNS query for video.netcinema.com.

604 CHAPTER 7 • MULTIMEDIA NETWORKING



Figure 7.4 ! DNS redirects a user’s request to a CDN server

3. The user’s Local DNS Server (LDNS) relays the DNS query to an authorita-
tive DNS server for NetCinema, which observes the string “video” in the
hostname video.netcinema.com. To “hand over” the DNS query to KingCDN,
instead of returning an IP address, the NetCinema authoritative DNS server
returns to the LDNS a hostname in the KingCDN’s domain, for example,
a1105.kingcdn.com.

4. From this point on, the DNS query enters into KingCDN’s private DNS 
infrastructure. The user’s LDNS then sends a second query, now for
a1105.kingcdn.com, and KingCDN’s DNS system eventually returns the 
IP addresses of a KingCDN content server to the LDNS. It is thus here, 
within the KingCDN’s DNS system, that the CDN server from which the 
client will receive its content is specified.

5. The LDNS forwards the IP address of the content-serving CDN node to the
user’s host.

6. Once the client receives the IP address for a KingCDN content server, it
establishes a direct TCP connection with the server at that IP address and
issues an HTTP GET request for the video. If DASH is used, the server will
first send to the client a manifest file with a list of URLs, one for each 
version of the video, and the client will dynamically select chunks from the
different versions.

Local
DNS server

NetCinema authoritative
 DNS server

www.NetCinema.com

KingCDN authoritative
server

KingCDN content
distribution server

2
5

6

3

1

4

7.2 • STREAMING STORED VIDEO 605



Cluster Selection Strategies

At the core of any CDN deployment is a cluster selection strategy, that is, a mech-
anism for dynamically directing clients to a server cluster or a data center within the
CDN. As we just saw, the CDN learns the IP address of the client’s LDNS server via
the client’s DNS lookup. After learning this IP address, the CDN needs to select an
appropriate cluster based on this IP address. CDNs generally employ proprietary
cluster selection strategies. We now briefly survey a number of natural approaches,
each of which has its own advantages and disadvantages.

One simple strategy is to assign the client to the cluster that is geographically
closest. Using commercial geo-location databases (such as Quova [Quova 2012]
and Max-Mind [MaxMind 2012]), each LDNS IP address is mapped to a geographic
location. When a DNS request is received from a particular LDNS, the CDN
chooses the geographically closest cluster, that is, the cluster that is the fewest kilo-
meters from the LDNS “as the bird flies.” Such a solution can work reasonably well
for a large fraction of the clients [Agarwal 2009]. However, for some clients, the
solution may perform poorly, since the geographically closest cluster may not be the
closest cluster along the network path. Furthermore, a problem inherent with all
DNS-based approaches is that some end-users are configured to use remotely
located LDNSs [Shaikh 2001; Mao 2002], in which case the LDNS location may be
far from the client’s location. Moreover, this simple strategy ignores the variation in
delay and available bandwidth over time of Internet paths, always assigning the
same cluster to a particular client.

In order to determine the best cluster for a client based on the current traffic
conditions, CDNs can instead perform periodic real-time measurements of delay
and loss performance between their clusters and clients. For instance, a CDN can
have each of its clusters periodically send probes (for example, ping messages or
DNS queries) to all of the LDNSs around the world. One drawback of this approach
is that many LDNSs are configured to not respond to such probes.

An alternative to sending extraneous traffic for measuring path properties is to
use the characteristics of recent and ongoing traffic between the clients and CDN
servers. For instance, the delay between a client and a cluster can be estimated by
examining the gap between server-to-client SYNACK and client-to-server ACK 
during the TCP three-way handshake. Such solutions, however, require redirecting
clients to (possibly) suboptimal clusters from time to time in order to measure the
properties of paths to these clusters. Although only a small number of requests need
to serve as probes, the selected clients can suffer significant performance degradation
when receiving content (video or otherwise) [Andrews 2002; Krishnan 2009].
Another alternative for cluster-to-client path probing is to use DNS query traffic to
measure the delay between clients and clusters. Specifically, during the DNS phase
(within Step 4 in Figure 7.4), the client’s LDNS can be occasionally directed to dif-
ferent DNS authoritative servers installed at the various cluster locations, yielding
DNS traffic that can then be measured between the LDNS and these cluster locations. 

606 CHAPTER 7 • MULTIMEDIA NETWORKING



In this scheme, the DNS servers continue to return the optimal cluster for the client,
so that delivery of videos and other Web objects does not suffer [Huang 2010].

A very different approach to matching clients with CDN servers is to use IP
anycast [RFC 1546]. The idea behind IP anycast is to have the routers in the Inter-
net route the client’s packets to the “closest” cluster, as determined by BGP. Specifi-
cally, as shown in Figure 7.5, during the IP-anycast configuration stage, the CDN
company assigns the same IP address to each of its clusters, and uses standard BGP
to advertise this IP address from each of the different cluster locations. When a BGP
router receives multiple route advertisements for this same IP address, it treats these
advertisements as providing different paths to the same physical location (when, in
fact, the advertisements are for different paths to different physical locations).
Following standard operating procedures, the BGP router will then pick the “best”
(for example, closest, as determined by AS-hop counts) route to the IP address
according to its local route selection mechanism. For example, if one BGP route

AS1

AS3
3b

3c

3a

1a

1c

1b

1d

AS2

AS4

2a

2c

4a 4c

4b

Advertise
212.21.21.21

CDN Server B

CDN Server A

Advertise
212.21.21.21

Receive BGP 
advertisements for
212.21.21.21 from
AS1 and from AS4.
Forward towards
Server B since it is
closer.

2b

Figure 7.5 ! Using IP anycast to route clients to closest CDN cluster

7.2 • STREAMING STORED VIDEO 607



(corresponding to one location) is only one AS hop away from the router, and all
other BGP routes (corresponding to other locations) are two or more AS hops away,
then the BGP router would typically choose to route packets to the location that
needs to traverse only one AS (see Section 4.6). After this initial configuration phase,
the CDN can do its main job of distributing content. When any client wants to see
any video, the CDN’s DNS returns the anycast address, no matter where the client is
located. When the client sends a packet to that IP address, the packet is routed to the
“closest” cluster as determined by the preconfigured forwarding tables, which were
configured with BGP as just described. This approach has the advantage of finding
the cluster that is closest to the client rather than the cluster that is closest to the
client’s LDNS. However, the IP anycast strategy again does not take into account the
dynamic nature of the Internet over short time scales [Ballani 2006].

Besides network-related considerations such as delay, loss, and bandwidth per-
formance, there are many additional important factors that go into designing a clus-
ter selection strategy. Load on the clusters is one such factor—clients should not be
directed to overloaded clusters. ISP delivery cost is another factor—the clusters may
be chosen so that specific ISPs are used to carry CDN-to-client traffic, taking into
account the different cost structures in the contractual relationships between ISPs
and cluster operators.

7.2.5 Case Studies: Netflix, YouTube, and Kankan
We conclude our discussion of streaming stored video by taking a look at three
highly successful large-scale deployments: Netflix, YouTube, and Kankan. We’ll see
that all these systems take very different approaches, yet employ many of the under-
lying principles discussed in this section.

Netflix

Generating almost 30 percent of the downstream U.S. Internet traffic in 2011, Netflix
has become the leading service provider for online movies and TV shows in the United
States [Sandvine 2011]. In order to rapidly deploy its large-scale service, Netflix has
made extensive use of third-party cloud services and CDNs. Indeed, Netflix is an inter-
esting example of a company deploying a large-scale online service by renting servers,
bandwidth, storage, and database services from third parties while using hardly any
infrastructure of its own. The following discussion is adapted from a very readable
measurement study of the Netflix architecture [Adhikari 2012]. As we’ll see, Netflix
employs many of the techniques covered earlier in this section, including video distri-
bution using a CDN (actually multiple CDNs) and adaptive streaming over HTTP.

Figure 7.6 shows the basic architecture of the Netflix video-streaming platform.
It has four major components: the registration and payment servers, the Amazon
cloud, multiple CDN providers, and clients. In its own hardware infrastructure, Net-
flix maintains registration and payment servers, which handle registration of new

608 CHAPTER 7 • MULTIMEDIA NETWORKING



Figure 7.6 ! Netflix video streaming platform

accounts and capture credit-card payment information. Except for these basic func-
tions, Netflix runs its online service by employing machines (or virtual machines) in
the Amazon cloud. Some of the functions taking place in the Amazon cloud include:

• Content ingestion. Before Netflix can distribute a movie to its customers, it
must first ingest and process the movie. Netflix receives studio master versions
of movies and uploads them to hosts in the Amazon cloud.

• Content processing. The machines in the Amazon cloud create many different
formats for each movie, suitable for a diverse array of client video players run-
ning on desktop computers, smartphones, and game consoles connected to tele-
visions. A different version is created for each of these formats and at multiple
bit rates, allowing for adaptive streaming over HTTP using DASH.

• Uploading versions to the CDNs. Once all of the versions of a movie have
been created, the hosts in the Amazon cloud upload the versions to the CDNs.

To deliver the movies to its customers on demand, Netflix makes extensive use of
CDN technology. In fact, as of this writing in 2012, Netflix employs not one but three
third-party CDN companies at the same time—Akamai, Limelight, and Level-3.

Having described the components of the Netflix architecture, let’s take a closer
look at the interaction between the client and the various servers that are involved in

Amazon Cloud

CDN server

CDN server

Upload
versions
to CDNs

Netflix
registration and
payment servers

CDN server

Client

Manifest
fileRegistration

and payment

Video
chunks
(DASH)

7.2 • STREAMING STORED VIDEO 609



movie delivery. The Web pages for browsing the Netflix video library are served
from servers in the Amazon cloud. When the user selects a movie to “Play Now,”
the user’s client obtains a manifest file, also from servers in the Amazon cloud. The
manifest file includes a variety of information, including a ranked list of CDNs and
the URLs for the different versions of the movie, which are used for DASH play-
back. The ranking of the CDNs is determined by Netflix, and may change from one
streaming session to the next. Typically the client will select the CDN that is ranked
highest in the manifest file. After the client selects a CDN, the CDN leverages DNS
to redirect the client to a specific CDN server, as described in Section 7.2.4. The
client and that CDN server then interact using DASH. Specifically, as described in
Section 7.2.3, the client uses the byte-range header in HTTP GET request messages,
to request chunks from the different versions of the movie. Netflix uses chunks that
are approximately four-seconds long [Adhikari 2012]. While the chunks are being
downloaded, the client measures the received throughput and runs a rate-determination
algorithm to determine the quality of the next chunk to request.

Netflix embodies many of the key principles discussed earlier in this section,
including adaptive streaming and CDN distribution. Netflix also nicely illustrates
how a major Internet service, generating almost 30 percent of Internet traffic, can
run almost entirely on a third-party cloud and third-party CDN infrastructures, using
very little infrastructure of its own!

YouTube

With approximately half a billion videos in its library and half a billion video views
per day [Ding 2011], YouTube is indisputably the world’s largest video-sharing site.
YouTube began its service in April 2005 and was acquired by Google in November
2006. Although the Google/YouTube design and protocols are proprietary, through
several independent measurement efforts we can gain a basic understanding about
how YouTube operates [Zink 2009; Torres 2011; Adhikari 2011a].

As with Netflix, YouTube makes extensive use of CDN technology to dis-
tribute its videos [Torres 2011]. Unlike Netflix, however, Google does not
employ third-party CDNs but instead uses its own private CDN to distribute
YouTube videos. Google has installed server clusters in many hundreds of differ-
ent locations. From a subset of about 50 of these locations, Google distributes
YouTube videos [Adhikari 2011a]. Google uses DNS to redirect a customer
request to a specific cluster, as described in Section 7.2.4. Most of the time,
Google’s cluster selection strategy directs the client to the cluster for which the
RTT between client and cluster is the lowest; however, in order to balance the
load across clusters, sometimes the client is directed (via DNS) to a more distant
cluster [Torres 2011]. Furthermore, if a cluster does not have the requested video,
instead of fetching it from somewhere else and relaying it to the client, the clus-
ter may return an HTTP redirect message, thereby redirecting the client to
another cluster [Torres 2011].

610 CHAPTER 7 • MULTIMEDIA NETWORKING



YouTube employs HTTP streaming, as discussed in Section 7.2.2. YouTube
often makes a small number of different versions available for a video, each with a
different bit rate and corresponding quality level. As of 2011, YouTube does not
employ adaptive streaming (such as DASH), but instead requires the user to manu-
ally select a version. In order to save bandwidth and server resources that would be
wasted by repositioning or early termination, YouTube uses the HTTP byte range
request to limit the flow of transmitted data after a target amount of video is
prefetched.

A few million videos are uploaded to YouTube every day. Not only are
YouTube videos streamed from server to client over HTTP, but YouTube uploaders
also upload their videos from client to server over HTTP. YouTube processes each
video it receives, converting it to a YouTube video format and creating multiple ver-
sions at different bit rates. This processing takes place entirely within Google data
centers. Thus, in stark contrast to Netflix, which runs its service almost entirely on
third-party infrastructures, Google runs the entire YouTube service within its own
vast infrastructure of data centers, private CDN, and private global network 
interconnecting its data centers and CDN clusters. (See the case study on Google’s
network infrastructure in Section 7.2.4.)

Kankan

We just saw that for both the Netflix and YouTube services, servers operated by
CDNs (either third-party or private CDNs) stream videos to clients. Netflix and
YouTube not only have to pay for the server hardware (either directly through own-
ership or indirectly through rent), but also for the bandwidth the servers use to dis-
tribute the videos. Given the scale of these services and the amount of bandwidth
they are consuming, such a “client-server” deployment is extremely costly.

We conclude this section by describing an entirely different approach for provid-
ing video on demand over the Internet at a large scale—one that allows the service
provider to significantly reduce its infrastructure and bandwidth costs. As you might
suspect, this approach uses P2P delivery instead of client-server (via CDNs) delivery.
P2P video delivery is used with great success by several companies in China, includ-
ing Kankan (owned and operated by Xunlei), PPTV (formerly PPLive), and PPs (for-
merly PPstream). Kankan, currently the leading P2P-based video-on-demand provider
in China, has over 20 million unique users viewing its videos every month.

At a high level, P2P video streaming is very similar to BitTorrent file down-
loading (discussed in Chapter 2). When a peer wants to see a video, it contacts a
tracker (which may be centralized or peer-based using a DHT) to discover other
peers in the system that have a copy of that video. This peer then requests chunks
of the video file in parallel from these other peers that have the file. Different from
downloading with BitTorrent, however, requests are preferentially made for
chunks that are to be played back in the near future in order to ensure continuous
playback.

7.2 • STREAMING STORED VIDEO 611


	Chapter 7 Multimedia Networking
	7.1 Multimedia Networking Applications
	7.1.1 Properties of Video
	7.1.2 Properties of Audio
	7.1.3 Types of Multimedia Network Applications

	7.2 Streaming Stored Video
	7.2.1 UDP Streaming
	7.2.2 HTTP Streaming
	7.2.3 Adaptive Streaming and DASH
	7.2.4 Content Distribution Networks
	7.2.5 Case Studies: Netflix, YouTube, and Kankan

	7.3 Voice-over-IP
	7.3.1 Limitations of the Best-Effort IP Service
	7.3.2 Removing Jitter at the Receiver for Audio
	7.3.3 Recovering from Packet Loss
	7.3.4 Case Study: VoIP with Skype

	7.4 Protocols for Real-Time Conversational Applications
	7.4.1 RTP
	7.4.2 SIP

	7.5 Network Support for Multimedia
	7.5.1 Dimensioning Best-Effort Networks
	7.5.2 Providing Multiple Classes of Service
	7.5.3 Diffserv
	7.5.4 Per-Connection Quality-of-Service (QoS) Guarantees: Resource Reservation and Call Admission

	7.6 Summary
	Homework Problems and Questions
	Programming Assignment
	Interview: Henning Schulzrinne


