
Javascript & Node.js:
An Introduction

ELEC6017

1 November 2013 

Last edit 8 November

Enrico Costanza



Introducing myself

• My research is in Human-Computer Interaction and 
Ubiquitous Computing

• I use Web technologies in my work to prototype and deploy 
in the field (evaluate) novel interactive systems

– Especially around the Internet of Things, interaction 
with autonomous agents & the Electricity Smart Grid

• It's the first time I teach this module (!)

– Feedback is welcome



Resources

• In addition to the COMP6017 module pages on the intranet, 
please see also:

– https://hci.ecs.soton.ac.uk/wiki/JavascriptReferences

– https://hci.ecs.soton.ac.uk/wiki/NodejsReferences

https://hci.ecs.soton.ac.uk/wiki/JavascriptReferences
https://hci.ecs.soton.ac.uk/wiki/JavascriptReferences
https://hci.ecs.soton.ac.uk/wiki/JavascriptReferences
https://hci.ecs.soton.ac.uk/wiki/JavascriptReferences
https://hci.ecs.soton.ac.uk/wiki/JavascriptReferences
https://hci.ecs.soton.ac.uk/wiki/NodejsReferences
https://hci.ecs.soton.ac.uk/wiki/NodejsReferences
https://hci.ecs.soton.ac.uk/wiki/NodejsReferences
https://hci.ecs.soton.ac.uk/wiki/NodejsReferences
https://hci.ecs.soton.ac.uk/wiki/NodejsReferences


Building Web services with Node.js

• Node.js is a relatively new (2009) platform that combines 

– Google's V8 Javascript engine

– An event loop for I/O (e.g. network, DB, ..)

– Basic infrastructure for internet protocols

• Key Node.js feature: event-driven

– Javascript is great for that!
(that's partially why node was written for Javascript)

• Javascript: same language on front-end & back-end



Do You Already Know Javascript?

A. No / not really

B. Yes, I have used it a little

C. Yes, I consider myself an expert



Other Programming Languages?
A. No programming at all

B. Python

C. C++

D. C

E. Matlab (or other math-related specific languages)

F. Java

G. PHP

H. Actionscript

I. Any other?



Quiz

• What will the following code print? (assume $.get is an ajax 
call to GET a URL and someUrl contains a valid URL)

1. "hello world"

2. "callback javascript"

3. "javascript callback"

4. Don't know

$.get(someUrl, function (data) {
console.log('callback');

});
console.log('javascript');



Quiz

• What will the following code print? (assume $.get is an ajax 
call to GET a URL and someUrl contains a valid URL)

1. "hello world"

2. "callback javascript"

3. "javascript callback"

4. Don't know

5. It cannot be predicted

$.get(someUrl, function (data) {
console.log('callback');

});
console.log('javascript');



Quiz

• What will the following code print? (assume $.get is an ajax 
call to GET a URL and someUrl contains a valid URL)

1. "hello world"

2. "callback javascript"

3. "javascript callback"

4. Don't know

5. It cannot be predicted

$.get(someUrl, function (data) {
console.log('callback');

});
console.log('javascript');



Quiz

• Consider the code on the right. What do you think it will 
print? (ignoring newlines)

1. A A B A

2. A A B B

3. A B B

4. A B A

5. It will not run

6. Don't know

var g;

var f = function () {
x = 'A';
g = function () {console.log(x);};

};

f();
g();

x = 'B';
console.log(x);
g();



Quiz

• Consider the code on the right. What do you think it will 
print? (ignoring newlines)

1. A A B A

2. A A B B

3. A B B

4. A B A

5. It will not run

6. Don't know

var g;

var f = function () {
var x = 'A';
g = function () {console.log(x);};

};

f();
g();

var x = 'B';
console.log(x);
g();



The Name Is Not Helpful

• Javascript is probably the most popular and the most 
misunderstood language ever

• Javascript: very different from Java

• Javascript: a full and advanced programming language



Good Parts and Bad Parts

• Javascript has good parts and bad parts

• The bad parts mostly seem to come from 

– the fact that the language was designed and 
implemented in a rush

– Javascript tries to look like Java, but it is VERY different

– Companies marketing and politics



Bad Parts: Guessing

• If you do not state things explicitly Javascript "tries to 
guess" – often it guesses wrong

– For example if you do not use semi-colon the interpreter 
will add them for you – this can interact badly with {}

• The equality operator automatically converts the types of 
the things you compare [live demo]

– Always use === (never ==)



Bad Parts: Numbers & "Void Things"

• The numbers are only floating point in IEEE-754 format

– 0.1 + 0.2 === 0.3 // false!

• There are a lot of ways to say "nothing":

– false, null, undefined, NaN ..so many it gets confusing

• NaN is not equal to anything ..not even to itself! [live demo]



Bad Parts: Implicit Global

• There is a global object
if you do not use the keyword var when you declare a 
variable, the variable gets added to the global object 
(i.e. it's kind-of implicit global)
[see quiz at beginning of lecture]

• Variable declaration can be implicit!

• If you use the keyword this without having an object it 
refers to the global object (no error, no warning)



Bad Parts: No Block Scope

• Scope is defined only by functions, NOT by {} blocks

function f() {
var i;
// ...
for (var i=0; i<5; i+=1) {

// ...
}

}



Bad Parts: Pseudo-classes & More

• There is a new operator that can be used to create objects; 
this tries to look like Java, but behaves in a very different 
way

– Avoid using new!

• There are more bad parts, but I hope these examples 
convinced you to stay away from the bad parts



Good Parts: Objects

• Everything is an object (almost)

• Objects are dynamic and loosely typed

• Prototypal inheritance & we can extend objects 
retrospectively! [live demo]



Good Parts: Functions

• Functions as objects
(e.g. passing functions as arguments to other functions)

• Closure: if you define functions inside other functions the 
inner function inherits the scope of the outer function even 
after the outer function returns

– It will hopefully make sense when we look at examples

• Anonymous functions



A Paradigm Shift is Required

• If you programmed using classes (e.g. C++ or Java), when 
you think of objects and encapsulation you think of classes

• You need to separate those concepts

• In Javascript the same concepts map to other programming 
patterns, e.g. to functions with closure and prototypal 
inheritance

• This can be very tricky at first



Good & Bad Parts, One Solution: JSLint

• JSLint is a program that checks Javascript code to verify 
that none of the bad parts are used

• It can be annoying at first, but it saves from a lot of troubles

– Some programmers don't like it – there is an alternative 
called JSHint

• For the coursework we required you use JSLint (not hint)



Good Parts and Bad Parts Summary

• I only covered some examples, there is more..

• Short answer: use JSLint!

• Long answer:

– Watch Douglas Crockford videos 
(my preferred option, links on the wiki)

– Read Douglas Crockford's book



Node.js 

• Everything (almost) in Node.js is done through 
asynchronous callback functions

• That is where having functions as 1st class objects and 
closure turn out to be very useful features

– Anonymous functions too

• Let's get started with Node.js through practical examples! 
(next lecture)

• Install Node.js as soon as possible



Summary

• Build web services using Node.js, based on Javascript

• Javascript is a programming language with very advanced 
(and cool!) features, including: functions as objects, closure

– Good parts and bad parts: only use the good parts!

• Javascript may requires a paradigm shift if you have 
experience with other prog. languages – JSLint will help


