
Web Protocols:
HTTP

COMP6017 Topics on Web Services

• Dr Nicholas Gibbins – nmg@ecs.soton.ac.uk

• 2013-2014

Web Protocols

Many protocols in use on the Web, but only two are Web
protocols

- Hypertext Transfer Protocol

- Simple Object Access Protocol

HTTP: Hypertext Transfer Protocol

3

Hypertext Transfer Protocol

4

Application protocol for distributed hypermedia

- First documented in 1991 (HTTP/0.9)

- HTTP/1.0 introduced in 1996 (RFC1945)

- HTTP/1.1 last updated in 1999 (RFC2616)

Client and server exchange request/response messages

client server

request

response

Hypertext Transfer Protocol

5

Typically a direct connection between client and server

May be intermediaries in the request/response chain

- Proxy

- Gateway

- Tunnel

HTTP Intermediaries: Proxy

6

client serverproxy

1. receives request
2. rewrites message
3. forwards to server

http http

HTTP Intermediaries: Gateway

7

client servergateway

1. receives request
2. translates request to server protocol

http other protocol

HTTP Intermediaries: Tunnel

8

client servertunnel

relays between connections
without changing message

http http

HTTP Messages

9

<message> ::= (<request> | <response>)
<header>*
CRLF
<body>

<request>::= <method> SP <request-uri> SP
<http-version> CRLF

<response> ::= <http-version> SP <status-code> SP
<reason-phrase> CRLF

<header> ::= <field-name> : <field-value> CRLF

<body> ::= <sequence of bytes>

Typical message exchange

10

client server
GET uri

200 OK

Minimal HTTP/1.1 Exchange

11

GET / HTTP/1.1
Host: www.acme.com

HTTP/1.1 200 OK
Content-Type: text/html

<html>
<head><title>Acme, Inc Homepage</title></head>
<body><h1>Welcome to Acme!</h1> … </body>
</html>

HTTP/1.1 Methods

12

GET – request a representation of a resource

HEAD – requests the body-less response from a GET request

POST – request that a representation be accepted as a new
subordinate of the specified resource

PUT – uploads a representation of the specified resource

DELETE – deletes the specified resource

• (also TRACE, OPTIONS, CONNECT, PATCH)

HTTP/1.1 Request Headers

13

• Accept: specify desired media type of response

• Accept-Language: specify desired language of response

• Date: date/time at which the message was originated

• Host: host and port number of requested resource

• If-Match: conditional request

• Referer: URI of previously visited resource

• User-Agent: identifier string for Web browser or user agent

HTTP/1.1 Status Codes

14

1xx – informational message

2xx – success

3xx – redirection

4xx – client error

5xx – server error

200 OK

15

The request has succeeded.

For a GET request, the response body contains a
representation of the specified resource

For a POST request, the response body contains a description
of the result of the action

201 Created

16

The request has been fulfilled and resulted in a new resource
being created.

300 Multiple Choices

17

Multiple representations of the requested resource exist, and
the client is provided with negotiation so that it may select a
preferred representation

301 Moved Permanently

18

The requested resource has been assigned a new permanent
URI and any future references to this resource SHOULD use
one of the returned URIs.

New permanent URI given using the Location: header

302 Found

19

The requested resource resides temporarily under a different
URI. Since the redirection might be altered on occasion, the
client SHOULD continue to use the Request-URI for future
requests.

Temporary URI given using the Location: header

401 Unauthorized

20

The request requires user authentication.

The response MUST include a WWW-Authenticate: header
field containing a challenge applicable to the requested
resource (username/password, for example)

403 Forbidden

21

The server understood the request, but is refusing to fulfill it.
Authorization will not help and the request SHOULD NOT be
repeated.

404 Not Found

22

The server has not found anything matching the Request-URI.
No indication is given of whether the condition is temporary or
permanent.

405 Method Not Allowed

23

The method specified in the Request-Line is not allowed for
the resource identified by the Request-URI. The response
MUST include an Allow: header containing a list of valid
methods for the requested resource.

409 Conflict

24

The request could not be completed due to a conflict with the
current state of the resource.

Conflicts are most likely to occur in response to a PUT request.
For example, if versioning were being used and the entity
being PUT included changes to a resource which conflict with
those made by an earlier (third-party) request, the server
might use the 409 response to indicate that it can't complete
the request.

HTTP/1.1 Response Headers

25

• Allow: lists methods supported by request URI

• Content-Language: language of representation

• Content-Type: media type of representation

• Content-Length: length in bytes of representation

• Date: date/time at which the message was originated

• Expires: date/time after which response is considered stale

• ETag: identifier for version of resource (message digest)

• Last-Modified: date/time at which representation was last
changed

HTTP Content Negotiation

26

HTTP allows the serving of different representations of a
resource based on client preferences

Two areas for negotiation

- Media type (Accept: and Content-Type:)

- Language (Accept-Language: and Content-Language:)

HTTP Content Negotiation Example

27

GET / HTTP/1.1
Host: www.acme.com
Accept: text/html; q=1.0, text/plain; q=0.5

HTTP/1.1 200 OK
Content-Type: text/html

<html>
<head><title>Acme, Inc Homepage</title></head>
<body><h1>Welcome to Acme!</h1> … </body>
</html>

HTTP Content Negotiation Example

28

GET / HTTP/1.1
Host: www.acme.com
Accept-Language: de; q=1.0, en-gb; q=0.5

HTTP/1.1 200 OK
Content-Type: text/html
Content-Language: de

<html>
<head><title>Acme, Inc Homepage</title></head>
<body><h1>Willkommen zu Acme!</h1> … </body>
</html>

HTTP Extensions

WebDAV

HTTP/1.1 still essentially a read-only protocol, as deployed

- Web Distributed Authoring and Versioning – HTTP extension

- Most recent version from 1999 – RFC2518

Extra methods:

- PROPFIND – retrieve resource metadata

- PROPPATCH – change/delete resource metadata

- MKCOL – create collection (directory)

- COPY – copy resource

- MOVE – move resource

- LOCK/UNLOCK – lock/release resource (so that others can’t change
it)

Beyond HTTP/1.1

HTTP Limitations

In order to fetch multiple resources from a server,
HTTP/1.0 opens multiple connections to that server

- Extra costs in connection set-up/teardown

- Increased latency if connections are not concurrent

Two partial solutions

- Reuse connections – HTTP Keep-Alive

- Service requests in parallel – HTTP Pipelining

Before HTTP/1.1, each HTTP
request used a separate TCP
connection

HTTP/1.0 and earlier

33

Client
Serve

r

GET

200 OK

GET

200 OK

GET

200 OK

TCP open

TCP close

TCP open

TCP close

TCP open

TCP close

HTTP/1.1 introduced keep-
alive

TCP connections reused for
multiple HTTP requests

HTTP Keep-Alive

34

Client
Serve

r

GET

200 OK

GET

200 OK

GET

200 OK

TCP open

TCP close

Also available from HTTP/1.1

Pipelining allows multiple
requests to be made without
waiting for responses

Server must send responses
in same order as received
requests

Reduces latency

HTTP Pipelining

35

Client
Serve

r

GET

200 OK

GET

200 OK

GET

200 OK

TCP open

TCP close

SPDY

36

Not an acronym - pronounced ‘speedy’

- Development between Google and Microsoft

- Preserves existing HTTP semantics – SPDY is purely a framing layer

- Basis for HTTP/2.0

Offers four improvements over HTTP/1.1:

- Multiplexed requests

- Prioritised requests

- Compressed headers

- Server push

HTTP/2.0 Prioritised Requests

37

A connection may contain multiple streams (each of which
consists of a sequence of frames)

Each stream has a 31-bit identifier

- Odd for client-initiated

- Even for server-initiated

Each stream has another 31-bit integer that expresses its
relative priority

- Frames from higher priority streams sent before those from lower
priority streams

- Allows asynchronous stream processing (unlike HTTP/1.1 Pipelining)

HTTP/2.0 Compressed Headers

38

HTTP/1.1 can compress message bodies using gzip or deflate

- Sends headers in plain text

HTTP/2.0 also provides the ability to compress message
headers

HTTP/2.0 Push

39

HTTP/1.1 servers only send messages in response to requests

HTTP/2.0 enables a server to pre-emptively send (or push)
multiple associated resources to a client in response to a single
request.

Further Reading

40

Hypertext Transfer Protocol – HTTP/1.1

http://www.w3.org/Protocols/rfc2616/rfc2616.html

	Slide 1
	Web Protocols
	HTTP: Hypertext Transfer Protocol
	Hypertext Transfer Protocol
	Hypertext Transfer Protocol
	HTTP Intermediaries: Proxy
	HTTP Intermediaries: Gateway
	HTTP Intermediaries: Tunnel
	HTTP Messages
	Typical message exchange
	Minimal HTTP/1.1 Exchange
	HTTP/1.1 Methods
	HTTP/1.1 Request Headers
	HTTP/1.1 Status Codes
	200 OK
	201 Created
	300 Multiple Choices
	301 Moved Permanently
	302 Found
	401 Unauthorized
	403 Forbidden
	404 Not Found
	405 Method Not Allowed
	409 Conflict
	HTTP/1.1 Response Headers
	HTTP Content Negotiation
	HTTP Content Negotiation Example
	HTTP Content Negotiation Example
	HTTP Extensions
	WebDAV
	Beyond HTTP/1.1
	HTTP Limitations
	HTTP/1.0 and earlier
	HTTP Keep-Alive
	HTTP Pipelining
	SPDY
	HTTP/2.0 Prioritised Requests
	HTTP/2.0 Compressed Headers
	HTTP/2.0 Push
	Further Reading

