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Web Protocols

Many protocols in use on the Web, but only two are Web 
protocols

- Hypertext Transfer Protocol

- Simple Object Access Protocol



HTTP: Hypertext Transfer Protocol
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Hypertext Transfer Protocol
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Application protocol for distributed hypermedia

- First documented in 1991 (HTTP/0.9)

- HTTP/1.0 introduced in 1996 (RFC1945)

- HTTP/1.1 last updated in 1999 (RFC2616)

Client and server exchange request/response messages

client server

request

response



Hypertext Transfer Protocol
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Typically a direct connection between client and server

May be intermediaries in the request/response chain

- Proxy

- Gateway

- Tunnel



HTTP Intermediaries: Proxy
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client serverproxy

1. receives request
2. rewrites message
3. forwards to server

http http



HTTP Intermediaries: Gateway
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client servergateway

1. receives request
2. translates request to server protocol

http other protocol



HTTP Intermediaries: Tunnel
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client servertunnel

relays between connections
without changing message

http http



HTTP Messages
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<message> ::= ( <request> | <response> ) 
<header>*
CRLF
<body>

<request>::= <method> SP <request-uri> SP
<http-version> CRLF

<response> ::= <http-version> SP <status-code> SP
<reason-phrase> CRLF

<header> ::= <field-name> : <field-value> CRLF

<body> ::= <sequence of bytes>



Typical message exchange
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client server
GET uri

200 OK



Minimal HTTP/1.1 Exchange
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GET / HTTP/1.1
Host: www.acme.com

HTTP/1.1 200 OK
Content-Type: text/html

<html>
<head><title>Acme, Inc Homepage</title></head>
<body><h1>Welcome to Acme!</h1> … </body>
</html>



HTTP/1.1 Methods
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GET – request a representation of a resource

HEAD – requests the body-less response from a GET request

POST – request that a representation be accepted as a new 
subordinate of the specified resource

PUT – uploads a representation of the specified resource

DELETE – deletes the specified resource

• (also TRACE, OPTIONS, CONNECT, PATCH)



HTTP/1.1 Request Headers
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• Accept: specify desired media type of response

• Accept-Language: specify desired language of response

• Date: date/time at which the message was originated

• Host: host and port number of requested resource

• If-Match: conditional request

• Referer: URI of previously visited resource

• User-Agent: identifier string for Web browser or user agent



HTTP/1.1 Status Codes
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1xx – informational message

2xx – success

3xx – redirection

4xx – client error

5xx – server error 



200 OK
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The request has succeeded. 

For a GET request, the response body contains a 
representation of the specified resource

For a POST request, the response body contains a description 
of the result of the action



201 Created
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The request has been fulfilled and resulted in a new resource 
being created.



300 Multiple Choices
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Multiple representations of the requested resource exist, and 
the client is provided with negotiation so that it may select a 
preferred representation



301 Moved Permanently
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The requested resource has been assigned a new permanent 
URI and any future references to this resource SHOULD use 
one of the returned URIs.

New permanent URI given using the Location: header



302 Found
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The requested resource resides temporarily under a different 
URI. Since the redirection might be altered on occasion, the 
client SHOULD continue to use the Request-URI for future 
requests.

Temporary URI given using the Location: header



401 Unauthorized
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The request requires user authentication.

The response MUST include a WWW-Authenticate: header 
field containing a challenge applicable to the requested 
resource (username/password, for example)



403 Forbidden

21

The server understood the request, but is refusing to fulfill it. 
Authorization will not help and the request SHOULD NOT be 
repeated.



404 Not Found
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The server has not found anything matching the Request-URI. 
No indication is given of whether the condition is temporary or 
permanent.



405 Method Not Allowed
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The method specified in the Request-Line is not allowed for 
the resource identified by the Request-URI. The response 
MUST include an Allow: header containing a list of valid 
methods for the requested resource.



409 Conflict
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The request could not be completed due to a conflict with the 
current state of the resource.

Conflicts are most likely to occur in response to a PUT request. 
For example, if versioning were being used and the entity 
being PUT included changes to a resource which conflict with 
those made by an earlier (third-party) request, the server 
might use the 409 response to indicate that it can't complete 
the request.



HTTP/1.1 Response Headers
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• Allow: lists methods supported by request URI

• Content-Language: language of representation

• Content-Type: media type of representation

• Content-Length: length in bytes of representation

• Date: date/time at which the message was originated

• Expires: date/time after which response is considered stale

• ETag: identifier for version of resource (message digest)

• Last-Modified: date/time at which representation was last 
changed



HTTP Content Negotiation
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HTTP allows the serving of different representations of a 
resource based on client preferences

Two areas for negotiation

- Media type (Accept: and Content-Type:)

- Language (Accept-Language: and Content-Language:)



HTTP Content Negotiation Example
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GET / HTTP/1.1
Host: www.acme.com
Accept: text/html; q=1.0, text/plain; q=0.5

HTTP/1.1 200 OK
Content-Type: text/html

<html>
<head><title>Acme, Inc Homepage</title></head>
<body><h1>Welcome to Acme!</h1> … </body>
</html>



HTTP Content Negotiation Example
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GET / HTTP/1.1
Host: www.acme.com
Accept-Language: de; q=1.0, en-gb; q=0.5

HTTP/1.1 200 OK
Content-Type: text/html
Content-Language: de

<html>
<head><title>Acme, Inc Homepage</title></head>
<body><h1>Willkommen zu Acme!</h1> … </body>
</html>



HTTP Extensions



WebDAV

HTTP/1.1 still essentially a read-only protocol, as deployed

- Web Distributed Authoring and Versioning – HTTP extension

- Most recent version from 1999 – RFC2518

Extra methods:

- PROPFIND – retrieve resource metadata

- PROPPATCH – change/delete resource metadata

- MKCOL – create collection (directory)

- COPY – copy resource

- MOVE – move resource

- LOCK/UNLOCK – lock/release resource (so that others can’t change 
it)



Beyond HTTP/1.1



HTTP Limitations

In order to fetch multiple resources from a server, 
HTTP/1.0 opens multiple connections to that server

- Extra costs in connection set-up/teardown

- Increased latency if connections are not concurrent

Two partial solutions

- Reuse connections – HTTP Keep-Alive

- Service requests in parallel – HTTP Pipelining



Before HTTP/1.1, each HTTP 
request used a separate TCP 
connection

HTTP/1.0 and earlier
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Client
Serve

r

GET

200 OK

GET

200 OK

GET

200 OK

TCP open

TCP close

TCP open

TCP close

TCP open

TCP close



HTTP/1.1 introduced keep-
alive

TCP connections reused for 
multiple HTTP requests

HTTP Keep-Alive
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Client
Serve

r

GET

200 OK

GET

200 OK

GET

200 OK

TCP open

TCP close



Also available from HTTP/1.1

Pipelining allows multiple 
requests to be made without 
waiting for responses

Server must send responses 
in same order as received 
requests

Reduces latency

HTTP Pipelining
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Client
Serve

r

GET

200 OK

GET

200 OK

GET

200 OK

TCP open

TCP close



SPDY
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Not an acronym - pronounced ‘speedy’ 

- Development between Google and Microsoft

- Preserves existing HTTP semantics – SPDY is purely a framing layer 

- Basis for HTTP/2.0

Offers four improvements over HTTP/1.1:

- Multiplexed requests

- Prioritised requests

- Compressed headers

- Server push



HTTP/2.0 Prioritised Requests
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A connection may contain multiple streams (each of which 
consists of a sequence of frames)

Each stream has a 31-bit identifier

- Odd for client-initiated

- Even for server-initiated

Each stream has another 31-bit integer that expresses its 
relative priority

- Frames from higher priority streams sent before those from lower 
priority streams

- Allows asynchronous stream processing (unlike HTTP/1.1 Pipelining)



HTTP/2.0 Compressed Headers
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HTTP/1.1 can compress message bodies using gzip or deflate

- Sends headers in plain text

HTTP/2.0 also provides the ability to compress message 
headers



HTTP/2.0 Push
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HTTP/1.1 servers only send messages in response to requests

HTTP/2.0 enables a server to pre-emptively send (or push) 
multiple associated resources to a client in response to a single 
request.



Further Reading
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Hypertext Transfer Protocol – HTTP/1.1

http://www.w3.org/Protocols/rfc2616/rfc2616.html
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