
tuesday outline
biological basis of information design
visual dimensions and data dimensions
tasks
deception and bad infographics

6179 planes

friday outline

- interacting with visualisations:

filtering, searching, selection

multidimensional data

toolkits: a D3 primer
key objectives

what are the goals of visualisation?

how do you choose a visual representation for data?
how do you evaluate a visualisation?
key objectives

aesthetics + engagement - is 'pretty' better?

identifying distortion +
wielding power tools (excel / matlab / etc)
vs hacking bespoke approaches
minor objectives

typical computer architecture

perceptual fusion

> serial / deliberative processing visual processing "attention-focused" routines optimised for access to purpose long term memory
highly paralle| processing"
"attention-focused"

"There was one significant anomaly none of the monks in the adjacent monastery contracted cholera. Investigation showed that this was not an anomaly, but further evidence, for they drank only beer, which they brewed themselves."

Sepal length	Sepal width	Petal length	Petal width	Species	Sepal length	Sepal width	Petal length	Petal width	Species	Sepal length	Sepal width	Petal length	Petal width	Species
5.1	3.5	1.4	0.2	*I. setosa*	5.4	3.4	1.5	0.4	*I. setosa*	5.4	3.4	1.5	0.4	*. setosa*
4.9	3	1.4	0.2	*l. setosa*	5.2	4.1	1.5	0.1	*I. setosa*	5.2	4.1	1.5	0.1	*. setosa*
4.7	3.2	1.3	0.2	${ }^{*}$ l. setosa*	5.5	4.2	1.4	0.2	*I. setosa*	5.5	4.2	1.4	0.2	*. setosa*
4.6	3.1	1.5	0.2	*I. setosa*	4.9	3.1	1.5	0.2	*I. setosa*	4.9	3.1	1.5	0.2	*. setosa*
5	3.6	1.4	0.2	*I. setosa*	5	3.2	1.2	0.2	*I. setosa*	5	3.2	1.2	0.2	*. setosa*
5.4	3.9	1.7	0.4	*I. setosa*	5.5	3.5	1.3	0.2	*I. setosa*	5.5	3.5	1.3	0.2	*. setosa*
4.6	3.4	1.4	0.3	*l. setosa*	4.9	3.6	1.4	0.1	*I. setosa*	4.9	3.6	1.4	0.1	*. setosa*
5	3.4	1.5	0.2	*l. setosa*	4.4	3	1.3	0.2	*I. setosa*	4.4	3	1.3	0.2	*. setosa*
4.4	2.9	1.4	0.2	*l. setosa*	5.1	3.4	1.5	0.2	*. setosa*	5.1	3.4	1.5	0.2	*. setosa*
4.9	3.1	1.5	0.1	${ }^{*}$ I. setosa*	5	3.5	1.3	0.3	*I. setosa*	5	3.5	1.3	0.3	*. setosa*
5.4	3.7	1.5	0.2	*l. setosa*	4.5	2.3	1.3	0.3	*. setosa*	4.5	2.3	1.3	0.3	*. setosa*
4.8	3.4	1.6	0.2	*I. setosa*	4.4	3.2	1.3	0.2	*. setosa*	4.4	3.2	1.3	0.2	*. setosa*
4.8	3	1.4	0.1	*l. setosa*	5	3.5	1.6	0.6	*. setosa*	5	3.5	1.6	0.6	*. setosa*
4.3	3	1.1	0.1	*l. setosa*	5.1	3.8	1.9	0.4	*. setosa*	5.1	3.8	1.9	0.4	*. setosa*
5.8	4	1.2	0.2	*l. setosa*	4.8	3	1.4	0.3	*I. setosa*	4.8	3	1.4	0.3	*. setosa*
5.7	4.4	1.5	0.4	*l. setosa*	5.1	3.8	1.6	0.2	*I. setosa*	5.1	3.8	1.6	0.2	*. setosa*
5.4	3.9	1.3	0.4	*I. setosa*	4.6	3.2	1.4	0.2	*. setosa*	4.6	3.2	1.4	0.2	*. setosa*
5.1	3.5	1.4	0.3	*I. setosa*	5.3	3.7	1.5	0.2	*I. setosa*	5.3	3.7	1.5	0.2	*. setosa*
5.7	3.8	1.7	0.3	*l. setosa*	5	3.3	1.4	0.2	*I. setosa*	5	3.3	1.4	0.2	*. setosa*
5.1	3.8	1.5	0.3	*l. setosa*	7	3.2	4.7	1.4	*. versicolor*	7	3.2	4.7	1.4	\%. versicolor*
5.4	3.4	1.7	0.2	*l. setosa*	6.4	3.2	4.5	1.5	*. versicolor*	6.4	3.2	4.5	1.5	\%. versicolor*
5.1	3.7	1.5	0.4	*l. setosa*	6.9	3.1	4.9	1.5	*. versicolor*	6.9	3.1	4.9	1.5	\%. versicolor*
4.6	3.6	1	0.2	*l. setosa*	5.5	2.3	4	1.3	*. versicolor*	5.5	2.3	4	1.3	\%. versicolor*
5.1	3.3	1.7	0.5	*I. setosa*	6.5	2.8	4.6	1.5	*. versicolor*	6.5	2.8	4.6	1.5	\%. versicolor*
4.8	3.4	1.9	0.2	*l. setosa*	5.7	2.8	4.5	1.3	*. versicolor*	5.7	2.8	4.5	1.3	*. versicolor*
5	3	1.6	0.2	*I. setosa*	6.3	3.3	4.7	1.6	*. versicolor*	6.3	3.3	4.7	1.6	\%. versicolor*
5	3.4	1.6	0.4	*l. setosa*	4.9	2.4	3.3	1	*. versicolor*	4.9	2.4	3.3	1	\%. versicolor*
5.2	3.5	1.5	0.2	*l. setosa*	6.6	2.9	4.6	1.3	*. versicolor*	6.6	2.9	4.6	1.3	\%. versicolor*
5.2	3.4	1.4	0.2	*l. setosa*	5.2	2.7	3.9	1.4	*. versicolor*	5.2	2.7	3.9	1.4	\%. versicolor*
4.7	3.2	1.6	0.2	*l. setosa*	5	2	3.5	1	*. versicolor*	5	2	3.5	1	\%. versicolor*
4.8	3.1	1.6	0.2	*l. setosa*	5.9	3	4.2	1.5	*. versicolor*	5.9	3	4.2	1.5	\%. versicolor*

Sepal length	Sepal width	Petal length	Petal width	Species	Sepal length	Sepal width	Petal length	Petal width	Species	Sepal length	Sepal width	Petal length	Petal width	Species
5.1	3.5	1.4	0.2	*I. setosa*	5.4	3.4	1.5	0.4	*I. setosa*	5.4	3.4	1.5	0.4	*. setosa*
4.9	3	1.4	0.2	*l. setosa*	5.2	4.1	1.5	0.1	*I. setosa*	5.2	4.1	1.5	0.1	*. setosa*
4.7	3.2	1.3	0.2	${ }^{*}$ l. setosa*	5.5	4.2	1.4	0.2	*I. setosa*	5.5	4.2	1.4	0.2	*. setosa*
4.6	3.1	1.5	0.2	${ }^{*}$ l. setosa*	4.9	3.1	1.5	0.2	*I. setosa*	4.9	3.1	1.5	0.2	*. setosa*
5	3.6	1.4	0.2	*l. setosa*	5	3.2	1.2	0.2	*I. setosa*	5	3.2	1.2	0.2	*. setosa*
5.4	3.9	1.7	0.4	*l. setosa*	5.5	3.5	1.3	0.2	*I. setosa*	5.5	3.5	1.3	0.2	*. setosa*
4.6	3.4	1.4	0.3	${ }^{*}$ l. setosa*	4.9	3.6	1.4	0.1	*I. setosa*	4.9	3.6	1.4	0.1	*. setosa*
5	3.4	1.5	0.2	*I. setosa*	4.4	3	1.3	0.2	*I. setosa*	4.4	3	1.3	0.2	*. setosa*
4.4	2.9	1.4	0.2	${ }^{*}$ l. setosa*	5.1	3.4	1.5	0.2	*I. setosa*	5.1	3.4	1.5	0.2	*. setosa*
4.9	3.1	1.5	0.1	${ }^{*}$ l. setosa*	5	3.5	1.3	0.3	*. setosa*	5	3.5	1.3	0.3	*. setosa*
5.4	3.7	1.5	0.2	${ }^{*}$ l. setosa*	4.5	2.3	1.3	0.3	*I. setosa*	4.5	2.3	1.3	0.3	*. setosa*
4.8	3.4	1.6	0.2	${ }^{*}$ l. setosa*	4.4	3.2	1.3	0.2	*. setosa*	4.4	3.2	1.3	0.2	*. setosa*
4.8	3	1.4	0.1	${ }^{*}$ I. setosa*	5	3.5	1.6	0.6	*I. setosa*	5	3.5	1.6	0.6	*. setosa*
4.3	3	1.1	0.1	${ }^{*}$ l. setosa*	5.1	3.8	1.9	0.4	*I. setosa*	5.1	3.8	1.9	0.4	*. setosa*
5.8	4	1.2	0.2	${ }^{*}$ l. setosa*	4.8	3	1.4	0.3	*I. setosa*	4.8	3	1.4	0.3	*. setosa*
5.7	4.4	1.5	0.4	*I. setosa*	5.1	3.8	1.6	0.2	*I. setosa*	5.1	3.8	1.6	0.2	*. setosa*
5.4	3.9	1.3	0.4	${ }^{*}$ l. setosa*	4.6	3.2	1.4	0.2	*. setosa*	4.6	3.2	1.4	0.2	*. setosa*
5.1	3.5	1.4	0.3	${ }^{*}$ l. setosa*	5.3	3.7	1.5	0.2	*I. setosa*	5.3	3.7	1.5	0.2	*. setosa*
5.7	3.8	1.7	0.3	${ }^{*}$ l. setosa*	5	3.3	1.4	0.2	*. setosa*	5	3.3	1.4	0.2	*. setosa*
5.1	3.8	1.5	0.3	${ }^{*}$ l. setosa*	7	3.2	4.7	1.4	*. versicolor*	7	3.2	4.7	1.4	*. versicolor*
5.4	3.4	1.7	0.2	${ }^{*}$ I. setosa*	6.4	3.2	4.5	1.5	*. versicolor*	6.4	3.2	4.5	1.5	\%. versicolor*
5.1	3.7	1.5	0.4	*I. setosa*	6.9	3.1	4.9	1.5	*. versicolor*	6.9	3.1	4.9	1.5	*. versicolor*
4.6	3.6	1	0.2	${ }^{*}$ l. setosa*	5.5	2.3	4	1.3	*. versicolor*	5.5	2.3	4	1.3	${ }^{\text {\% }}$. versicolor*
5.1	3.3	1.7	0.5	*I. setosa*	6.5	2.8	4.6	1.5	*. versicolor*	6.5	2.8	4.6	1.5	*. versicolor*
4.8	3.4	1.9	0.2	${ }^{*}$ l. setosa*	5.7	2.8	4.5	1.3	*. versicolor*	5.7	2.8	4.5	1.3	*. versicolor*
5	3	1.6	0.2	*I. setosa*	6.3	3.3	4.7	1.6	*. versicolor*	6.3	3.3	4.7	1.6	*. versicolor*
5	3.4	1.6	0.4	${ }^{*}$ l. setosa*	4.9	2.4	3.3	1	*. versicolor*	4.9	2.4	3.3	1	*. versicolor*
5.2	3.5	1.5	0.2	*l. setosa*	6.6	2.9	4.6	1.3	*. versicolor*	6.6	2.9	4.6	1.3	*. versicolor*
5.2	3.4	1.4	0.2	${ }^{*}$ I. setosa*	5.2	2.7	3.9	1.4	*. versicolor*	5.2	2.7	3.9	1.4	\%. versicolor*
4.7	3.2	1.6	0.2	${ }^{*}$ l. setosa*	5	2	3.5	1	*. versicolor*	5	2	3.5	1	*. versicolor*
4.8	3.1	1.6	0.2	*. setosa*	5.9	3	4.2	1.5	*. versicolor*	5.9	3	4.2	1.5	ヶ. versicolor*

so how do we come up with these visual representations and which do we choose for a dataset?

so you have a dataset...

$\left\{x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right\} \quad x_{1}$

so you have a dataset...

$\left\{x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right\}$
$\{1,200,5,6, \ldots\}$
$\{1.0,2.0,1.2,4, \ldots\}$
$\left\{{ }^{\prime} a^{\prime},{ }^{\prime} b^{\prime},{ }^{\prime} 12 c^{\prime},{ }^{\prime} d^{\prime} . ..\right\}$
$\{20 \%, 30 \%, 1 \%, 5 \% \ldots\}$
\{ , O, 党, ...
$\left.\left\{f(0), g(\%), q(Q,)^{(}\right) \ldots\right\}$

X1
integral
fixed point
alpha(-numeric)
fractions of a population
categorical
relational

so you have a dataset...

objective - help the user to understand : relationships among the elements of the set
so you have a dataset...
$x=\left\{\overrightarrow{x_{1}}, \overrightarrow{x_{2}}, \overrightarrow{x_{3}}, \overrightarrow{x_{4}}, \ldots\right\}$

it's probably multivariate
if these are observations of the (same] of object(s) over time
"time series"
if these are observations of different things at a single point in time "population"
if these are observations of different things at a different points in time "observations"
so you have a dataset...
$x=\left\{\overrightarrow{x_{1}}, \overrightarrow{x_{2}}, \overrightarrow{x_{3}}, \overrightarrow{x_{4}}, \ldots\right\}$

if these are observations of the [same] of object(s) over time
"time series"
if these are observations of different things at a single point in time "population"
if these are observations of different things at a different points in time "observations"

objective - help the user to understand :

1. elements - specifically relationships among dimensions [through a large number of examples]
2. relationships - among different elements

data dimension types

integral
fixed point
alpha(-numeric)
fractions of a population
categorical
relational

data dimension types

Visual dimension type

 position $\begin{aligned} & \text { relative location } \\ & \text { centrality }\end{aligned}$integral
fixed point
alpha(-numeric)
fractions of a population
categorical
relational

data dimension types

Visual dimension type

 position $\begin{aligned} & \text { relative location } \\ & \text { centrality }\end{aligned}$integral
shape
fixed point
alpha(-numeric)
fractions of a population
categorical
relational

data dimension types

Visual dimension type

 position $\begin{aligned} & \text { relative location } \\ & \text { centrality }\end{aligned}$integral
fixed point
alpha(-numeric)
fractions of a population
categorical
relational

data dimension types

Visual dimension type

position	relative loc centrality
shape	colour
size	saturation opacity
width	
height	

integral
fixed point
alpha(-numeric)
fractions of a population
categorical
relational

data dimension types

Visual dimension type

position	relative loc centrality
shape	
colour	saturation opacity
size	width height

orientation

fractions of a population
categorical
relational

data dimension types

Visual dimension type

	position	relative location centrality
integral	shape	
fixed point	colour	saturation opacity
alpha(-numeric)	size	width height
fractions of a population	orientation	
categorical	stroke	colour pattern, thickness
relational		

data dimension types

Visual dimension type

	position	relative location centrality
integral	shape	
fixed point	colour	saturation opacity
alpha(-numeric)	size	width height
fractions of a population	orientation	
categorical	stroke	colour pattern, thickness
relational	opacity	

data dimension types

Visual dimension type

	position	relative location centrality
integral	shape	
fixed point	colour	saturation opacity
alpha(-numeric)	size	width height
	orientation	
fractions of a population	stroke	colour pattern, thickness
categorical	opacity	
relational	texture	

data dimension types

Visual dimension type

	position	relative location centrality
integral	shape	
fixed point	colour	saturation opacity
alpha(-numeric)	size	width height
	orientation	
fractions of a population	stroke	colour pattern, thickness
categorical	opacity	
relational	texture	
	movement	

data dimension types

Visual dimension type

integral
fixed point
alpha(-numeric)
fractions of a population
categorical
relational

position | relative location |
| :--- |
| centrality |

shape

size | width |
| :--- |
| height |
| opacity |

orientation

stroke | colour |
| :--- |
| pattern, |
| thickness |

opacity
texture
movement
juxtaposition

data dimension types

Visual dimension type

position

linear mapping of values logarithmic.. bin and count..

$\|\|\|$

position

position

First three PCA directions

only have up to 3 spatial dimensions to work with
orientation
range-limited

orientation

range-limited

$$
|/-\backslash|
$$

orientation

range-limited

symmetry properties of the
geometry

orientation

range-limited
symmetry properties of the
geometry

orientation

range-limited
symmetry properties of the
geometry

$$
\begin{aligned}
& =1=1 \\
& =1=1 \\
& \hdashline=1 \\
& \vdots=1
\end{aligned}
$$

UUUU unuu UUUU UUUU

UUUU UUUU UUU

orientation

popouts using multiple dimensions

orientation

popouts using multiple dimensions

1D colour

orientation

popouts using multiple dimensions

orientation

popouts using multiple dimensions

Using colour for continuous values

Using colour for continuous values

\qquad

Using colour for continuous values

SEVERE

HIGH
HGHRISK
IERRORIST AITACKS
$\equiv 1 \equiv V / \Delta y \equiv D$ SIGNTFICANT RISK OF TERRORIST ATIACKS
GUARDED GEMERAL RISKOF TERRORISI AITACKS

LOW
LOW RISK of
TERRORIST AITACKS

Using colour for continuous values

problem 1: No natural ordering

Using colour for continuous values

problem 1: No natural ordering

Using colour for continuous values

problem 1: No natural ordering

Using colour for continuous values

problem 1: No natural ordering

Using colour for continuous values

Drag and drop the colors In each row to arrange them by hue order.
The first and last color chips are fixed. Click on "Score Test" when done.

\square
http:/ / www.colormunki.com/game/huetest_kiosk
problem 1: No natural ordering

Using colour for continuous values

Drag and drop the colors In each row to arrange them by hue order.
The first and last color chips are fixed. Click on "Score Test" when done.

http:/ / www.colormunki.com/game/huetest_kiosk
problem 1: No natural ordering

Using colour for continuous values

Protanopia affects 8% of males, 0.5% females of Northern European ancestry
protanopia
deuteranopia problem 2: c lour sensitivity

Using colour for continuous values
problem 3: yellow is special

Using colour for continuous values problem 3: yellow is special

relative sensitivity to light wavelenatis

putina it
ALL TOGETHER

Using colour for continuous values problem 4: Details: overemphasised or obscured

Using colour for continuous values problem 4: Details: overemphasised or obscured

hue 'borders' overemphasise small changes, hue 'middles' blend potentially important details

Using colour for continuous values problem 4: Details: overemphasised or obscured
hue 'borders' overemphasise small changes, hue 'middles' blend potentially important details

Using colour for continuous values problem 5: pop out can drown out

- - - - - - - - - - - - -- 응ํ - - - - - - - 응
 - 0 - 0 - -0 - - 0 -

 - - - $-\odot$ - - -

 -

Tuesday, 12 February 13

juxtaposition: small multiples

Copyright, 1878, by MUYBRIDGE.
WHE HORSE IN MOTION.
MORSE'S Gallery, 417 Montgomery St., San Franawco

multidimensional data

Cluster
Cluster 6

multidimensional data

distorted to make area
proportional to votes

Obama-Romney 2012 victories by state

multidimensional data

napoleon's march to moscow charles joseph minard

multidimensional data

how many dimensions can you find?
napoleon's march to moscow charles joseph minard

multidimensional data

how many dimensions can you find?
ans: 1) size of the amy 2-3) path (lat/lng) taken on a map
4) direction army was traveling 5) temperature 6) dates army reached particular locations
napoleon's march to moscow charles joseph minard

multidimensional data

multidimensional data

E.J. Marey

La méthode graphique (1885)

multidimensional data

Paris-Lyon

E.J. Marey

La méthode graphique (1885)

motion

200 years that changed the world with Hans Rosling

Free to redistribute

www.gapminder.org

aaron koblin - flight patterns

Android Global Activations Oct'08-Jan '11

Standard Visualisation
Techniques

ordering significant
order insignificant

ordering significant
order insignificant

ordering significant

order insignificant

ordering significant

рәృృos

extrema
(whiskers)

scatter
(an aside: bad stacked areas and "streamgraphs")

(an aside: bad stacked areas and "streamgraphs")

(an aside: bad stacked areas and "streamgraphs")

(an aside: bad stacked areas and "streamgraphs")

(an aside: bad stacked areas and "streamgraphs")

TechCrunch Top 8 Name References
(May 2006 - May 2008)

"abandon all hope ye who vieweth"

(an aside: bad stacked areas and "streamgraphs")

TechCrunch Top 8 Name References
(May 2006 - May 2008)
"abandon all hope ye who vieweth"
multivariate relational data: hierarchical

multivariate relational data: hierarchical

multivariate relational data: hierarchical

hyperbolic tree

multivariate relational data: hierarchical

treemap

multivariate relational data: hierarchical

multivariate relational data: hierarchical

Count

multivariate relational data: non-hierarchical

venn diagram
multivariate relational data: non-hierarchical

venn diagram
multivariate relational data: non-hierarchical

parallel sets

Plenty of other interesting visualisations....

Some favourites I didn't mention? send them to: max@hip.cat and I'll compile a list for the class

parallel sets

infographic fails: visual + statistical sleight of hand to mislead the audience

IF BUSH TAX CUTS EXPIRE

TOP TAX RATE

8:01p ET
TOP STORIES

1. Barchart baseline fail

IF BUSH TAX CUTS EXPIRE

TOP TAX RATE

NOW

1. Barchart baseline fail

Soaring gas prices

The price of a gallon of regular gas has risen 38 cents in South Florida in the past month. The national average rose 32 cents. $\$ 4.0 \quad \$ 3.941$
 Now

1. Barchart baseline fail

Soaring gas prices

The price of a gallon of regular gas has risen 38 cents in South Florida in the past month. The national average rose 32 cents. $\$ 4.0$ $\$ 3.941$

Miami Ft. Lauderdale Florida U.S.

New York State
 Total Budget Expenditures and Aid to Localities in billions of dollars

Fiscal 1966-1976
2. Perspective and measurement fail

Per capita
budget expenditures,
in constant dollars

2. "Huge differences" fail

THE SHRINKING FAMILY DOCTOR

In California

Percentage of Doctors Devoted Solely to Family Practice
100

1: 2,247 ratio to population
8,023 Doctors
using area (2 dimensions) to represent one dimension
2. "Huge differences" fail

THE SHRINKING FAMILY DOCTOR
In California
Percentage of Doctors Devoted Solely to Family Practice $1964 \quad 1975 \quad 1990$ 27% 12.0\%

迹
 8,023 Doctors
using area to represent one dimension

2. "Huge differences" fail

THE SHRINKING FAMILY DOCTOR

 In CaliforniaPercentage of Doctors Devoted Solely to Family Practice

ENGAGING WITH CONTACT CENTERS

```
Call centers are a
multi-functional operation.
The reason why consumers
engage in contact centers
may affect the experience
they have with them.
TO RECEIVE PRODUCT OR SERVICE
BILLING INQUIRY
OBTAIN OTHER
INFORMATION
CHECK STATUS OF ORDER
FILE COMPLAINT OTHER
CONSUMERS ASKED TO SELECT ALL THNT APPLY
```


2. "Huge differences" fail

using area to represent one dimension

Quiz: How does this fail?

THE ISSUE OF TRUST

ACGENTS ANDD DISTRUST

Another reason why accents affects customer service is the question of credibility. If I can not understand you, then I can not trust you.

An experiment conducted by the University of Chicago demonstrated this aspect. The question posed, do trivia statements sound less true when spoken by a non-native speaker? Furthermore, listeners were told in advance that all of the trivia questions were provided by the experimenter. This way, even listeners who were knowingly prejudice against non-native accents should not have been affected.

The results showed that the heavier the accent the less trust worthy the person became.

A NATIVE ACCENT
MILD ACCENT
heavy accent

SUBSIDIZE THIS PRICE THAT THE MARKET WOULO SET FOR THAT EUERGY.

The government spends sillions of dollars to support the energy infustry, which allows it to make energy cheaper than it should cost a ceuntry a shewed semse of mhat each gallon of gas of wind-powered diectron costs Tisis is a look at where the governonent directed is subsiof dollars from 2002 to 2008.

In conclusion

