
Testing

Yvonne Howard ymh@ecs.soton.ac.uk

Computational Systems
COMP1209

A Problem

A café wants to build an automated system to
provide breakfasts. The robot waiter greets
people before taking their order by name.

Customers can order different combinations of
ingredients for their meal, and also ask for one
drink. The system then cooks the breakfast. It
must be able to fry sausages, bacon, eggs and
mushrooms; toast bread, waffles and muffins;
and pour their orange juice or coffee.

 The waiter then serves the breakfast.

The all new RoboCafe

Waiter, waiter – I’ve been

sitting here for two days, all I

want is my breakfast

Waiter, waiter –

There’s no coffee in

my cup

Waiter, waiter – I

didn’t order 25

sausages

Waiter, waiter – I

don’t like my eggs

toasted

***!!

Waiter, waiter

So what went wrong and how can we
have happiness café?

Waiter, waiter –this

breakfast is perfect -

here’s a huge tip

***!!

Software Engineering: Big Picture

This is rarely a straightforward progression – in reality there are
lots of iterations and points of feedback

We can do some software engineering

• Testing
▫ Used for most software systems

• Or
▫ Formal verification

 Build a model of the software

 Use a prover to prove that the model is correct

 Only a very small proportion of systems are
verified this way, mostly safety critical systems

• We’re going to talk about testing

Cost of Change Curve (Barry Boehm
1981)
• The cost to address a defect rises exponentially

the longer it takes you to find it.

• if you inject a defect into your system and find it
a few minutes later and fix it, the cost is almost
negligible.

• if you find it three months later the cost of fixing
rises exponentially
▫ to fix the original problem

▫ to fix any work based on the defect

.

The Cost of Change Curve: Traditional versus Agile

• Agile techniques have
feedback cycles on the
order of minutes or
days,

• Traditional techniques
have long feedback
cycles (end of
development)

• Traditional strategies
can be effective at
finding defects but the
cost of fixing them can
be much higher

What are we testing for?

Which of these might be valid?

1. Find bugs?

2. Try to break the software?

3. Reduce risk?

4. Check that performance is OK?

5. Prove the software is defect free?

“Program testing can be used to show the
presence of defects, but never their absence”

Edgar Dijkstra

The goal of testing

To increase to an acceptable level the

user’s confidence that the system under

test will behave correctly under all

circumstances of interest

• We have to define
 Correct behaviour

 Level of confidence

 Domain of concernUSER FOCUS

Correct behaviour

• Bender takes Dave’s order for:
▫ 2 sausages, 1 fried egg, 2 slices of toast and a cup of

coffee

• Bender serves Dave his breakfast of:
▫ 2 sausages 1 fried egg, 2 slices of toast and a cup of

coffee

• Other issues (known as Non Functional
requirements NFRs, ‘ilities) which describe
Quality
▫ How long should Dave wait to order?

▫ Is burnt toast acceptable?

▫ Is the user experience/usability good enough?

• You can build a defect free system that is
unusable or has poor quality

Correct Behaviour

• Definition of ‘correct behaviour’ required

• Provided by a “Baseline” or “Blueprint”

• Depends on level of testing

Whole system – Requirements specification

Increment – user stories

One module – Program specification

… and so on

• Compare results of the test with what was supposed to
happen

• Test result – Pass or Fail

Level of Confidence

• Usually specified as ‘residual defect discovery rate’

▫ Number of defects found in a given test or series of tests, or

• Number of defects found in a given time

▫ “Less than 10 non-critical defects discovered in last 7 days”

• An alternative – Reliability specification

▫ “Mean time between failures shall be not less than 5000 hours”

▫ Difficult to determine until software goes “Live”

Tests are supposed to find errors
A good test is focused to find errors

A successful test finds new classes of errors

• So how do we do good, successful, systematic testing?
• Choose the right test method
• Make test cases

• A set of input values and expected outcomes for a
software feature

• Make a test plan
• All the test cases necessary to test the software thoroughly

• Follow good testing practice
• Plan testing early (agile testers, write tests before code)
• User focus, not designer or programmer
• Use independent testing staff, not the people who designed

or built the software (except agile teams where testers and
developers are interchangable)

When do we test?

• During implementation
▫ Unit tests - For each module or submodule

▫ Integration tests - When you put modules together
–

▫ Regression tests - When you change or add a
component, to make sure that everything still
works together

• when you think you are ready to deliver
▫ Alpha – in house

▫ Beta - with your pals

▫ Acceptance – on official delivery

Two main types of testing

• White box

• Black Box

Structural (White Box) Testing

• Uses knowledge of the program structure and
algorithms

• Construct test cases that will follow every path
through the system
▫ Every statement in a method is executed at least

once

▫ Every branch has been exercised for true/false
conditions

• This is very expensive and is usually done only for
a small, critical part of the system

Black box testing

outputs?inputs

Tests without reference to internal processing
• Considers the correct behaviour of inputs and expected
outputs
• Uses techniques to reduce the amount of testing needed to
satisfy correctness

• Equivalence partitioning
• Boundary value analysis

We are going to concentrate on black box testing

outputs?inputs

Strengths and weaknesses of Black Box Testing

• Strengths

▫ More effective for larger units of
code than glass box testing

▫ Tester needs no knowledge of
implementation

▫ Tester and developer can be
independent

▫ Test’s are from the user’s point
of view

▫ Exposes ambiguities in the spec
(but it’s a bit late in the game
for that)

▫ Test cases can be designed
early, from the specification

• Weaknesses

▫ Only a small number of possible
inputs can reasonably be tested

▫ Good test cases need clear
specifications

▫ Some program paths will be
untested

▫ Cannot target code directly

What is meant by a ‘test case’?

• “A set of test inputs, execution conditions, and expected
results developed for a particular objective, such as to
exercise a particular program path or to verify compliance
with a specific requirement” (IEEE standard)

• “Input – processing – output”
• Example (informal):

 Insert a card into an ATM (cash machine). The ATM reads the card
and asks for the PIN

• Inputs may include data and/or controls

▫ E.g. Numbers entered into a program
▫ E.g. Bank card inserted into ATM

• The expected result is a statement of what the system should
do – from the point of a satisfied customer

Test Cases Problem

• A user ID consists of two characters < 1 alpha
char> < 1 digit>
▫ The < 1 alpha char> consists of the characters A..Z or

a..z

▫ < 1 digit> consists of the characters 0..9

• What test cases do you think that you might need
to ensure that software processes a user ID
correctly?

Some possible test cases - Test
case

System action Test
data
input

Pass criteria Pass/fail

1 When the system asks
for a userID

R6 Accept user ID and
continue

2 When the system asks
for a userID

xyz Reject userID with error
message ‘only 2 chars’

3 When the system asks
for a userID

6R Reject userID with error

4 When the system asks
for a userID

R% Reject userID

5… … … …

For a 2 char userID! – How can we stop the test
case explosion?

Test Scenarios

• Scenarios are sequences of test cases which
represent a typical use of the system

• Example of an ATM Scenario

• Choice of Scenario has to take account of
• Valid sequences (must work correctly)
• Invalid sequences must produce

correct error messages (and not
proceed)

Where do we find our test cases and scenarios?

• Test cases and scenarios need to explore
▫ Correct behaviour
▫ Error cases

• Baseline (or blueprint) documents define correct
behaviour, depending on the level of testing
▫ Requirements – System Test
▫ High level design – Integration Test
▫ Low level design – Unit Test
▫ Agile developers write tests before they write code

• Test cases and scenarios are derived from the baseline
documentation
▫ Large numbers are often required, determined by

 Logical complexity – Unit test and Integration test
 Number and nature of requirements – Higher test levels

How Many Tests?

• A balance must be struck
▫ We want high quality - thorough testing
▫ We need to deliver the software – cannot go on testing

for ever

• We have to pick specific values to use in test

cases
▫ Not enough time to test all possible values

• Equivalence Partition Analysis helps to select a
sensible number of test cases to run

• Boundary Value Testing helps to choose values
for those tests

Equivalence Partition Analysis

• To reduce the number of test cases to a necessary
minimum.

▫ Only one test case of each partition is needed to evaluate the behaviour of the
program for the related partition.

▫ To use more or even all test cases of a partition will not find new faults in the
program.

▫ The values within one partition are considered to be "equivalent".

▫ Thus the number of test cases can be reduced considerably

• To select the right test cases to cover all possible
behaviour

▫ you also find the so called "dirty" test cases.

▫ An inexperienced tester may be tempted to use as test cases the input data
range and forget to select some out of the invalid partitions.

▫ This would lead to a huge number of unnecessary test cases on the one hand,
and a lack of test cases for the dirty ranges on the other hand.

Equivalence Partition Analysis

• Equivalence partitions are usually derived from the specification of
the systems or component 's behaviour.
▫ consider

 Input equivalence partitions

 Output equivalence partitions

• An input has values which are valid and other values which are
invalid.
▫ These can be used to identify the equivalence partitions

• If you had defined a function which has to pass the parameter
"month" of a date.
▫ What are the valid and invalid values?

• The valid range for the month is 1 to 12, standing
for January to December.
▫ This valid range is called a valid partition.

• there are two partitions of invalid ranges.
▫ The first invalid partition would be <= 0

▫ and the second invalid partition would be >= 13.

 ... -2 -1 0 1…….......12 13 14 15

 --------------|--------|-----------|--------------------

 Invalid partition 1 P1 Invalid partition 2

 valid partitions

Equivalence partitions

Equivalence Partitioning

• Divide the domain of all possible inputs into classes of
equivalent inputs

• input conditions
Type of input
condition

Number of Valid
equivalence
classes needed

Number of
Invalid
equivalence
classes needed

range 1 2

value 1 2

set 1 1

Boolean
(true/false)

1 1

• Construct one test case for each class

Equivalence Partitions – for value ranges

• An input has certain ranges which are valid and
other ranges which are invalid.

• An example is the value range for the month
parameter that we looked at earlier

▫ The valid range for the month is 1 to 12, standing for
January to December. This is the valid partition

▫ There are 2 invalid ranges

▫ these are the invalid partitions: <= 0 and >= 13

Equivalence Partitions – for a set
• Test particular input item matches a set of values

▫ If each case will be treated the same way
 Identify one valid class for values in the set
 and one invalid class representing values outside the set
 E.g valid course codes for semester 1 are: (COMP1209, COMP1202,

COMP1216, COMP1201)
Valid class: code is one of (COMP1209, COMP1202, COMP1216, COMP1201)

Invalid class: code not one of (COMP1209, COMP1202, COMP1216, COMP1201)

▫ If each case will be treated differently, Identify:
 one valid equivalence class for each element and
 one invalid equivalence class for values outside the set
 E.g valid boat codes are (catamaran, dinghy, rib)

 Valid class is catamaran
 Valid class is dinghy
 Valid class is rib
 Invalid class is not one of (catamaran, dinghy, rib)

Boundary Value Analysis - Selecting Values for
Test Data for each Equivalence Class

• Once equivalence classes (partitions) are identified, we
can think about test data values
▫ We need some values that fall into each class

• Select values at the boundaries and somewhere in the
middle of each class
▫ This called Boundary Value Analysis
▫ If these data points produce correct results, it is fairly safe to

assume that other values will also be correctly processed

• NOTE: Correct operation at the other points is not
guaranteed but we have to find sensible ways to limit testing

Boundary Value Analysis
• Using the domain of all possible inputs and outputs

• Divide the domain into valid and invalid classes

• For each boundary: construct test cases with these inputs

Test case Test case Inputs

1 Boundary value as input

2 Slightly less than boundary value

3 Slightly less than boundary value

Test plan for a student enrolment system

A student enrolment system:

• the system accepts students between 16 and 99 years of
age

• Find the equivalence partitions

• Use boundary value analysis to identify values for your
test casesEquivalence

class
 value (age) Expected result

(message)
Pass/fai
l

Using Equivalence Partitioning & Boundary
Value Analysis for the userID problem

• Going back to our first example: A user ID
consists of two characters < 1 alpha char> < 1
digit>
▫ The < 1 alpha char> consists of the characters A..Z or

a..z

▫ < 1 digit> consists of the characters 0..9

• What test cases do you think that you might need
to ensure that software processes a user ID
correctly - using equivalence partitioning (and
boundary value analysis?)

Loan Interest calculator example

Equivalence Partitions
Build a table for your equivalence classes:
showing inputs and expected outputs

Selecting Values – Valid Partition

Selecting Values – Interest Error

Summary

• Test cases are the smallest steps

• Test cases are assembled into scenarios
▫ Represent a typical usage of the system

• Equivalence Partitioning
▫ Used to find groups of inputs / outputs that produce

similar behaviour

• Boundary Value Analysis
▫ Used to select values for each equivalence partition

Happiness café?

Waiter, waiter –this

breakfast is perfect -

here’s a huge tip

***!!

Oh for crying out loud. I never wanted to be a
dev anyway. What I *really* want is to be
a...tester!I'm a tester and I'm
okay,

I sleep all night and I
work all day.

(He's a tester and he's
okay,

he sleeps all night and
he works all day.)

I look for bugs, I log
those bugs, I do it all
with glee.

And the really good
ones, I show off
repeatedly.

(He looks for bugs, he
logs those bugs, he does
it all with glee.

And the really good
ones, he shows off
repeatedly.)

I'm a tester and I'm
okay,

I sleep all night and I
work all day.

(He's a tester and he's
okay,

he sleeps all night and
he works all day.)

I pester PMs, I pester
devs, I make them
despair and cry.

I know I've done my
job, when I hear them
wail "Why oh why?"

(He pesters PMs, he
pesters devs, he makes
them despair and cry.

He knows he's done his
job, when he hears
them wail "Why oh
why?")

I'm a tester and I'm
okay,

I sleep all night and I
work all day.

(He's a tester and he's
okay,

he sleeps all night and
he works all day.)

I black box test, I white
box test, I write docs
and PR too.

I wish I was in
marketing, 'cause then
I'd rule the roost.

(He black box tests, he
white box tests, he
writes docs? and PR
too??

He wishes he was in
marketing??? Where's
my Nerf gun? Get
him!!!)

[The dev runs out,
chased by the backup
singers who continue to
sing:]

He's a tester and he's
okay,

he sleeps all night and
he works all day.

He's a tester and he's
okaaaaaaaaaaaaaaaaaay
.....

he sleeps all night and
he works all day.

The braidy tester

http://
www.thebraidytester.com
/blogs.html

http://www.thebraidytester.com/blogs.html
http://www.thebraidytester.com/blogs.html
http://www.thebraidytester.com/blogs.html
http://www.thebraidytester.com/blogs.html
http://www.thebraidytester.com/blogs.html
http://www.thebraidytester.com/blogs.html

	Slide 1
	A Problem
	The all new RoboCafe
	So what went wrong and how can we have happiness café?
	Software Engineering: Big Picture
	We can do some software engineering

	Cost of Change Curve (Barry Boehm 1981)
	The Cost of Change Curve: Traditional versus Agile
	What are we testing for?
	The goal of testing
	Correct behaviour
	Correct Behaviour
	Level of Confidence
	Slide 14
	When do we test?
	Two main types of testing
	Structural (White Box) Testing
	Black box testing
	Slide 19
	Strengths and weaknesses of Black Box Testing
	What is meant by a ‘test case’?

	Test Cases Problem
	Some possible test cases -
	Test Scenarios
	Where do we find our test cases and scenarios?
	How Many Tests?
	Equivalence Partition Analysis

	Equivalence Partition Analysis

	Equivalence partitions
	Equivalence Partitioning
	Equivalence Partitions – for value ranges
	Equivalence Partitions – for a set
	Slide 33
	Boundary Value Analysis
	Test plan for a student enrolment system
	Slide 36
	Loan Interest calculator example
	Equivalence Partitions

	Selecting Values – Valid Partition
	Selecting Values – Interest Error

	Summary
	Happiness café?
	Slide 43

