REST in Practice

A Tutorial on Web-based Services

E N

Jim Webber

http://jim.webber.name

/ an Robinson

p://iansrobinson.com




Motivation

This follows the plot from a book cz
~ which is currently being written by:

— Jim Webber

— Savas Parastatidis
— lan Robinson

~* With help from lots of other lovely people like:

— Halvard Skogsrud, Lasse Westh-Nielsen, Steve Vinoski,
Mark Nottingham, Colin Jack, Spiros Tzavellas, Glen

Ford, Sriram Narayan, Ken Kolchier, Guilherme Silveira
- and many more!

ie book deals with the Web as a distributed computing
Hrm

Web as a whole, not just REST

es this tutorial...




Timetable

09:00-10:30
— Web basics
— URI templates
— RPC
— HTTP
— CRUD
10:30-10:45
— Coffee break
10:45-12:00
Semantics
H /permedia formats
stbucks DAP
icks retrospective

— | /

N

13:00-14:30
— Hypermedia design
— Scalability

— Security

14:30-14:45

— Coffee break
14:45-16:00

— Atom

— AtomPub

— Epilogue




Introduction

S IS tutorial about tt
‘s very HTTP centric
But it’s not about Web pages!

The Web is a middleware platform which is...

~ — Globally deployed
— Has reach
— Is mature
- And is a reality in every part of our lives
n makes it interesting for distributed systems geeks




Leonard Richardson's Web service maturity heuristic

Divide and conquer

Refactor
(Do the same things
in the same way)

Describe special
behaviourin a
standard way

Spreads complexity

around

Reduces complexity Uniform interface

Makes complexity

learnable

Hypermedia

http://www.crummy.com/writing/




Why Web? Why not just REST?

brilliant
tectural style

1e Web allows for | , /

_thanjust RESTful e Hypermedia

's a spectrum of
__of service styles HTTP




"is an Architectural style suited to the Web...

- ...but it is not mandatory



/eb? Why be RE










Web History

rted asa distributed hyp /
— CERN, Berners-Lee, 1990 -
" Revolutionised hypermedia —

~ — Imagine emailing someone a hypermedia deck
nowadays!

Architecture of the Web largely fortuitous

~— W3C and others have since retrofitted/captured the
~ Web’s architectural characteristics




The Web broke the rules




Web Fundamentals

- _

smbrace the Web, we
he Web is a distributed hypermedia el
~ — Itdoesn’t try to hide that distribution from

- Our challenge:

— Figure out the mapping between our problem domain
and the underlying Web platform




Key Actors in the Web Architecture

Resources
Web Server

Internet

Reverse
Proxy &
Proxy Server :
R ‘ .

[ Firewall







Interacting with Resources

deal with representatio (

— Not the resources themselves "
* ““Pass-by-value” semantics
— Representation can be in any format
* Any media type
- Each resource implements a standard uniform interface
 — Typically the HTTP interface
esources have names and addresses (URIs)
Typically HTTP URIs (aka URLS)




Resource Architecture

-
Consumer
(Web Client) Uniform Interface

(Web Server)

Resource Representation
(e.g. XML document)

Physical Resources




Resource Representations

"

ing your system Web-friend!

,‘\

. T S
You expose many resources, rather tha
endpoints

Each resource has one or more representations

- — Representations like JSON or XML or good for the
programmatic Web

Moving representations across the network is the way we
ransact work in a Web-native system




are addresses of resources

ach resource has at least oe URI ‘ |
They identify “interesting” things
~ — j.e. Resources © 5
,; Any resource implements the same (uniform) interface
— Which means we can access it programmatically!

Declarative scheme




URI/Resource Relationship

\ny two resources cannot be idel

— Because then you’ve only got one resource.
But they can have more than one name
— http://[foo.com/software/latest

— http://[foo.com/software/v1.4

No mechanism for URI equality

. Canonical URIs are long-lived

— E.g. http://example.com/versions/1.1 versus
http://example.com/versions/latest

nd back HTTP 303 (“see also”) if the request is for an
ate URI

he Content-Location header in the response




Scalability

) is truly Internet-scale
— Loose coupling e

* Growth of the Web in one placeis not in
changes in other places

— Uniform interface

e HTTP defines a standard interface for all actors on
the Web

* Replication and caching is baked into this model
— Caches have the same interface as real resources!

iteless model

ipports horizontal scaling




Fault Tolerant

> Web is stateless

- All information required to pro_c
present in that request

“ A

* Sessions are still plausible, but must be handle
Web-consistent manner
— Modelled as resources!

Statelessness means easy replication
— One Web server is replaceable with another

Easy fail-over, horizontal scaling




Recoverable

Web places emphasis on repe
etrieval

- — GETisidempotent

* Library of Congress found this the hard way

— In failure cases, can safely repeat GET on resources

- HTTP verbs plus rich error handling help to remove
guesswork from recovery

— HTTP statuses tell you what happened!
‘Some verbs (e.g. PUT, DELETE) are safe to repeat




Ps is a mature techno 0g --

Based on SSL for secure pomt to- 0iN
retrieval

~Isn’t sympathetic to Web architecture

— Restricted caching opportunities
Higher-order protocols like Atom are starting to change
this...

- Encrypt parts of a resource representation, not the
transport channel

0 cache!










Conflicting URI Philosophies

Rls should be descriptive, predictabl. .
— http://spreadsheet/cells/a2,a9 ‘
— http://jim.webber.name/2007/06.aspx i

* Convey some ideas about how the underlying
resources are arranged

— Can infer http://spreadsheet/cells/bo,b10o and http://
jim.webber.name/2005/05.aspx for example

* Nice for programmatic access, but may introduce
| coupling
JRIs should be opaque?
ttp://tinyurl.com/6
mBL says ‘““opaque URIs are cool”

onvey no semantics, can’t infer anything from them
Don’t introduce coupling




URI Templates, in brief

templates to




URI Templates are Easy!

 the URI: A

tp://restbucks.com/orders?{or: /
“You could do the substitution and geta U Iz
ttp://restbucks.com/orders?1234

Can easily make more complex URIs too

— Mixing template and non-template sections
tp://restbucks.com/{orders}/{shop}/{year}/{month}.xml

se URI templates client-side to compute server-side URIs

ut beware this introduces coupling!




Why URI Templates?

//77

lar URIs are a good idiol

- Helps with understanding, self dc e

They allow users to infer a URI
= [ the pattern is regular
,; URI templates formalise this arrangement
— And advertise a template rather than a regular URI




URI Templates Pros and Cons

\

serything interesting in a Web-based serv
- Remember, two schools of thought:
— Opaque URIs are cool (Berners-Lee)
— Transparent URIs are cool (everyone else)
~* URI templates present two core concerns:

— They invite clients to invent URIs which may not be
honoured by the server

- — They increase coupling since servers must honour
forever any URI templates they’ve advertised

Rl templates sparingly, and with caution
ry point URIs only is a good rule of thumb







Web Tunnelling

| rVices tunnel SOAP «—/;
- Using the Web as a transport only | |

/

{

— Ignoring many of the features for robust
has built in

- Many Web people do the same!

— URI tunnelling, POX approaches are the most popular
styles on today’s Web

- Worse than SOAP! AT R
be “lightweight”

* | ess metadata! and RESTful




Richardson Model Level 1

really has a more
el 0 mindset

sn’t understand




have signatures
1 URI structure to methc

http://Eestbucks.com}?laceOrdericoffee:1atte&size=large&milk:whole&comsume-1ocation=to-g%§:

arguments

| public OrderConfirmation PlaceOrder(Order order)

R
.




GET /PlaceOrder?coffee=latte&size=large&milk=whole&comsume-location=to-go HTTP/1.1
Host: restbucks.com

Request

HTTP/1.1 200 OK

Content-type: text/plain
Response oI /p

OrderId=1234







de URI Tunnelling




elling Strengths




URI Tunnelling Weaknesses

 brittle RPC! - |
ight coupling, no metadata e

‘

~ — No typing or “return values” specified in the |
- Not robust — have to handle failure cases manually

i

No metadata support

~ — Construct the URIs yourself, map them to the function
- manually

typically use GET (prefer POST)

OK for functions, but against the Web for procedures
N side-affects




POX Pattern

servers understand how tc
odies
— Because they understand forms

. And how to respond with a body

- — Because that’s how the Web works

POX uses XML in the HTTP request and response to move a
call stack between client and server




Richardson Model Level 0

hoint
ot really URI friendly
sn’t understand




’)0OX Architecture

client application domain restbucks application domain

/(:
| waiter

Local method cal method call }

return

" Local method ca

client-side ] j server-side

dispatcher dispatcher

MLdocumen 9 ML document %
om HTTP dient J: Y 1 from HTTP dient J;:

M (ML documen
into HTTP clien

payload

“HTTP POST + XML
payload




POX on the Wire

POST /PlaceOrder HTTP/1.1
Content-Type: application/xml
Host: restbucks.com
Content-Length: 361 :
client application domain : restbucks application domain

<Order xmlns="http://restbucks.com">

<CustomerId»abcd</CustomerId> :
<ConsumeAt>takeAway</ConsumeAt > :
<Items> :

<Item>
<Name>latte</Name>
<Quantity>1</Quantity>
<Milk>whole</Milk>
<Sized>small</Size>

</Ttem>

<Item>
<Name>cookie</Name>
<Kind>chocolate-chip</Kind>
<Quantity>2</Quantity>

</Ttem>

</Items>
</Order>

HTTP/1.1 200 OK

Content-Length: 93

Content-Type: application/xml; charset=utf-8§
Server: Microsoft-HTTPAPI/2.0

Date: Mon, @4 Aug 2008 18:16:49 GMT

<OrderConfirmation xmlns="http://restbucks.com">
<OrderId>1234</OrderId>
</OrderConfirmation>




.Net POX Service Example

From the Web server

Check HTTP Verb (we
want POST)

Get XML result, and get bytes

Return XML bytes to client







ent Example










POX Weaknesses

t and server must collude ¢

ightly coupled approach

/

No metadata support

~ — Unless you’re using a POX toolkit that supports WSLC
- with HTTP binding (like WCF)

Does not use Web for robustness
Does not use SOAP + WS-* for robustness either




Web Abuse

"

/

th POX and URI Tunnelling -
Veb

- — Ignoring status codes

— Reduced scope for caching
_. — No metadata

— Manual crash recovery/compensation leading to high
development cost

= Etc
ey’re useful in some situations

d you can implement them with minimal toolkit
.

’re not especially robust patterns




-
-
=

COMMON SENSE

Just because you can, doesn't mean you should.







The HTTP Verbs

-

etrieve a representation of a resource

’

- Create a new resource: PUT to a new URI, or POS
‘to an existing URI

Modify an existing resource: PUT to an existing URI
Delete an existing resource: DELETE
et metadata about an existing resource: HEAD

Aepol JaAI3S I\
e Aq pooissapun 3uiaq Jo pooyl|ayi| duiseatdad

which of the verbs the resource understands:




HEAD Semantics

like GET, excep

"HEAD /order/1234 HTTP 1.1

- Host: restbucks.com

B0 OK

ontent-Type: application/vnd.restbucks
+xml

t-Modified: 2007-07-08T15:00:34%
‘aabd653b-65d0-74da-"~c63-4bca-

Useful for caching,
performance




PTIONS Semantics

You can only read and add to
this resource, may change
over time




HTTP Status Codes

e HTTP status codes provide me
esources .

=

¢ They are part of what makes the Web a rich plz
- building distributed systems

They cover five broad categories

— 1XX - Metadata

~ — 2xx — Everything’s fine

— 3xx — Redirection

X 4xx — Client did something wrong
xx — Server did a bad thing

re a handful of these codes that we need to know in







0 - OK
L

— The server successfully completé vhe
~ asked of it

\d
- 201 - Created

— Sent when a new resource is created at the client’s
request via POST

- — Location header should contain the URI to the newly
created resource

02 - Accepted
lient’s request can’t be handled in a timely manner

ation header should contain a URI to the resource
ill eventually be exposed to fulfil the client’s
NS




More 2xx Codes

03 — Non-Authoritative Information

- — Much like 200, except the client knows c/ :
in any headers since they could have come from
be cached etc.

* 204 - No Content
— The server declines to send back a representation

* Perhaps because the associated resource doesn’t have
one

— Used like an “ack”
. * Prominent in AJAX applications
206 — Partial Content
— Optimisation used in failure cases to support partial GETs

Request Content-Range header must specify the byte
ange of the resource representation it wants

ponse headers must contain Date;

'agand Content-Location headers must be
istent with the original request not the current values




- Multiple ChOIces

- Response Location header shoul /
URI

— Message body can contain list of URIs
~ + InXHTML possibly

— In general avoid being ambiguous!
01— Moved Permanently

— Location header contains the new location of the
resource

see Other

tion header contains the location of an
ve resource

direction




More 3xx

04 — Not Modified

— The resource hasn’t changed, use the"_
representation

— Used in conjunction with conditional GET
— Client sends the Tf-Modified-Since header
— Response Date header must be set

- — Response Etagand Content-Location headers
- must be same as original representation

— Temporary Redirect

he request hasn’t been processed, because the
urce has moved

must resubmit request to the URI in the response
on header




0 — Bad Request

— The client has PUT or POST a resource
_ that is in the right format, but contains i
information

401 - Unauthorized

— Proper credentials to operate on a resource weren’t
provided

— Response WWW-Authenticate header contains the
type of authentication the server expects

- Basic, digest, WSSE, etc
’t leak information!
- 404 in these situations




More 4XxX

— Forbidden -
- The client request is OK, but the serv r
~ process it -
* E.g. Restricted by IP address -

\ - Implies that resource exists, beware leaking information

| 404 — Not Found
— The standard catch-all response
- May be a lie to prevent 401 or 403 information leakage




Even more 4xx

- Method Not Allowed
— The resource doesn’t support a given r

-~ — Theresponse A11ow header lists the verb _‘
understands

BE.g. Allow: GET, POSIE SN
- 406 — Not Acceptable

- — The client places too many restrictions on the resource
~ representation via the Accept-* header in the request

b he server can’t satisfy any of those representations




Yet More 4xx

5 — Conflict

— Tried to change the state of the reso
the server won’t allow o

* E.g. Trying to DELETE something that doesn’t ex15t -
* 410 - Gone

- — Theresource has gone, permanently.

— Don’t send in response to DELETE

* The client won’t know if it was deleted, or if it was
gone and the delete failed

11— Length Required

a request (POST, PUT) contains a representation, it
Ild set the Content-Length header

ver might demand this, and interrupt the client




Still more 4xx

Precondition Failed

— Server/resource couldn’t meet one or r
preconditions

* As specified in the request header

— E.g. Using Tf-Unmodified-Since and PUT to
modify a resource provided it hasn’t been changed by
others

' 13 — Request Entity Too Large

Response comes with the Retry-After headerin the
ope that the failure is transient







5xx Codes

- Internal Server Error
- The normal response when we’r

. 501 — Not Implemented

:. — The client tried to use something in HTTP Wthh
- server doesn’t support

* Keep HTTP use simple, get a better HTTP server
502 — Bad Gateway
A proxy failed

Yoesn’t help us much ®







HTTP Headers

//77

ers provide metadata tc

, Identlfy resource representatlo
length of payload, supported verbs etc

- HTTP defines a wealth of these B

~ — And like status codes they are our building blocks for
robust service implementations




Must-know Headers

orization

- Contains credentials (basic, digest W »

- — Extensible
~ Content-Length
_f — Length of payload, in bytes
‘ Content-Type
— The resource representation form

- * E.g. application/vnd.restbucks+xml, application/
- Xhtml+xml




More Must-Know Headers

g/ _None-Match .
, paque identiﬁer—think“chec- 1
- representations |
- — Used for conditional GET
If-Modified-Since/Last-Modified
. _ Used for conditional GET too
Host

- Contains the domain-name part of the URI




Yet More Must-Know Headers

ation
~ Used to flag the location of a created/r
— In combination with:

* 201 Created, 301 Moved Permanently, 302 Found 30
Temporary Redirect, 300 Multiple Choices, 303 See
Other

‘User-Agent
— Tells the server side what the client-side capabilities are

ould not be used in the programmable Web!




now Headers




Useful Headers

ept |
— Client tells server what formats it want

- — Can externalise this in URI names in ,
~ Accept-Encoding

— Client tells server that it can compress data to save
bandwidth

— Client specifies the compression algorithm it
understands

1tent-Encoding
‘er-side partner of Accept-Encoding




More Useful Headers

\/

— Server tells client what verbs are allow

requested resource (used in combination /
OPTIONS)

‘ Cache-Control

— Metadata for caches, tells them how to cache (or not)
the resource representation

| - And for how long etc.
ntent-MD5
ryptographic checksum of body

Il integrity check, has computation cost




Yet More Useful Headers

ect

)

— A conditional - client asks if it’s Ok O [

expecting 100-Continue

, — Server either responds with 100 or 417 — Expectation
Failed

- Expires
- — Server tells client or proxy server that representation
~ can be safely cached until a certain time
Match
sed for ETag comparison
ysite of I-None-Match




Final Useful Headers

Inmodified-Since .
— Useful for conditional PUT/POST

* Make sure the resource hasn’t changed
been manipulating it

— Compare with If-Modified-Since
Range

— Specify part of a resource representation (a byte range)
- that you need - aka partial GET

Useful for failure/recovery scenarios




Less Often-Used Headers

ry-After _
— Resource or server is out of action fc

o\

- — Usually associated with 413 — Request -/ |

or one of the 5xx server error statuses

Content-Location
— Header gives the canonical URI of the resource

- Client might be using a different URI to access that
resource




HTTP RCF 2616 is Authoritative

)| /'// V

 statuses and headers
inge of headers in the HTTP spec

hey spec contains more than we discuss here

It is authoritative about usage

And it’s a good thing to keep handy when you’re working
- on a Web-based distributed system!







Using the Web

Caches, proxies,
servers, etc




source Lifecycle




. dSon Model Level 2




POST /orders

¥ﬂ-§l:?rder . />

201 Created

Location: ../1234

Ordering
Client 400 Bad Request

500 Internal Error

Ordering
Service




POST Semantics

creates a new resource

ut the server decides on that resource’s

" Common human Web example: posting to / |

~ — Server decides URI of posting and any comments made
on that post

Programmatic Web example: creating a new employee
record

- And subsequently adding to it




’OST Request

Verb, path, and HTTP
version

Restbucks-specific XML
content

Content
(again Restbucks XML)







When POST goes wrong

ay be 4xx or 5xx errors

- Client versus server problem
~ We turn to GET!
- Find out the resource states first

— Then figure out how to make forward or backward
progress

Then solve the problem
- May involve POSTing again
Viay involve a PUT to rectify server-side resources in-




ylementation wit




GET /orders/1234

200 OK
<order .. />

Ordering Ordering
Client 404 Not Found Service

500 Internal Error




Library of congress
catalogue incident!










Goes wrong




Idempotent Behaviour

1 action with no side affe
— Comes from mathematics E

F In practice means two things: - ——
~ — Asafe operation is one which changes no state at .

* E.g. HTTP GET

— An idempotent operation is one which updates state in
an absolute way

* E.g. X =4 ratherthan x +=2

b-friendly systems scale because of safety

a hing!

fault tolerant because of idempotent behaviour
tr in failure cases







Ordering
Client

PUT /orders/1234
<order .. />

404 Not Found

409 Conflict

500 Internal Error

Ordering
Service




PUT Semantics

creates a new resource but

/

— Providing the server logic allows it

- Also used to update existing resources by overwrit g
in-place
PUT is idempotent
— Makes absolute changes
'. is not safe
| changes state!




Updated content




Minimalist response contains no
entity body




When PUT goes wrong

If we get 5xx error, or
-some 4xx errors simply
PUTagmn'

— PUT is idempotent
If we get errors

indicating incompatible
tates (409, 417) then do
yme forward/backward
pensating work
maybe PUT again

N

HTTP/1.1 409 C
Date: Sun, 21 Dec 2
Content-Length:382

<order xmlns="http://schemas.restbucks.cc

order">
<location>takeAway</location>
<items>
<item>
<milk>whole</milk>
<name>latte</name>
<quantity>2</quantity>
<size>small</size>
</item>
<item>
<milk>whole</milk>
<name>cappuccino</name>
<quantity>1l</quantity>
<size>large</size>
</item>
</items>
<status>served</status>
</order>










Ordering
Client

DELETE /orders/1234

404 Not Found

Ordering
Service

405 Method Not Allowed

500 Service Unavailable




This is important for
decoupling
implementation details
from resources







When DELETE goes Really Wrong

_me 4XX responses
| ndicate that deletion
- isn’t possible

.~ — The state of the resource
isn’t compatible

Try forward/backward
- compensation instead

Can’t delete an
order that’s
already served

Date: Tue,

<order xmlns="http://sé£emas%
order">
<location>takeAway</location>
<items>
<item>
<name>latte</name>
<milk>whole</milk>
<size>small</size>
<quantity>2</quantity>
</item>
<item>
<name>cappuccino</name>
<milk>skim</milk>
<size>large</size>
<quantity>1</quantity>
</item>
</items>
<status>served</status>
</order>




CRUD does not mean Worthless

.."
l.a“.“ i
Ly Bawsa Tiv wow
"/ o S iom 3



CRUD is Good?

\UD is good .
— Butit’s not great -
2 CRUD-style services use some HTTP features

¥

- But the application model is limited

— Suits database-style applications

— Hence frameworks like Microsoft’s Astoria
- CRUD has limitations
— CRUD ignores hypermedia
_RUD encourages tight coupling through URI templates
| D encourages server and client to collude
B pports more sophisticated patterns than CRUD!







Microformats

roformats are an example of

Inovation at the edges of the Web
~ — Not by some central design authority (e.g.

Started by embedding machine-processable elements in
- Web pages

— E.g. Calendar information, contact information, etc

— Using existing HTML features like class, rel, etc




Semantic versus semantic

emantic Web is top-down \
¥

— Driven by the W3C with extensive arra [o
standards, committees, etc T

— Has not currently proven as scalable as the visionaries
hoped

* RDF triples have been harvested and processed in
private databases

Microformats are bottom-up

— Little formal organisation, no guarantee of

~ interoperability

. Popular formats tend to be adopted (e.g. hCard)
sy to use and extend for our systems

| to integrate into current and future
nmatic Web systems




Microformats and Resources

' Microformats to "- s
Xist y
— |l.e. Use hCard for contacts, hCalendar for ; .

Create your own formats (sparingly) in other places —
- — Annotating links is a good start
— <link rel="withdraw.cash" .../>

‘ —-<link rel="service.post"
- type="application/atom+xml"
href="{post-uri}" title="some title">

rel attribute describes the semantics of the referred

-







Media Types Rule!

//VV

Neb’s contracts are exp
nd link relations

— If you know the type, you can procs t | i

~ Some types are special because they work in harmony
the Web

— We call these “hypermedia formats™




(Hyper) media types

- Standardised media type

Processing model

Hypermedia controls
(links and forms)

Supported operations
(methods, headers and
status codes)

Representation formats
(may include schemas)

Compose application-
specific behaviours on
top of the handling of
standardised media types

Specific




Other Resource Representations

e ember, XML is not the o y way _.\i
erialised .

— Remember the Web is based on gpre_en‘f ona
Transfer

* The choice of representation is left to the implementer
~ — (Can be a standard registered media type
— Or something else
But there is a division on the Web between two families
- Hypermedia formats
K Formats which host URIs and links
ular formats
ich don’t




Old XML is not Hyperme_da

Where are the links?
Where’s the protocol?




So what?

e

‘do you know the next th

ow do you know the resources you’re
with next?

I;n short, how do you know the service’s protc.
- — Turn to WADL? Yuck!
- — Read the documentation? Come on!

— URI Templates? Tight Coupling!




URI Templates are NOT a Hypermedia Substitute

.\\

Often URI templates are used to ad\ [Ise
- service hosts

— Do we really need to advertise them 3l [
This is verbose
This is out-of-band communication

This encourages tight-coupling to resources through their
URI template

This has the opportunity to cause trouble!

— Knowledge of “deep” URIs is baked into consuming
~ programs

Services encapsulation is weak and consumers will
ogram to it

ce will change its implementation and break




Bad Ideas with URI Templates

gine we’re created an orde , W
Ne could share this URI template:
— http://restbucks. com/payment de

" The order id field should match the order ID that came
from the restbucks service

— Sounds great!
But what if Restbucks outsources payment?

— Change the URI for payments, break the template,
break consumers!

Nl
L]

1l what you share!




Better Ideas for URI Templates: Entry Points

sine that we have a well-knov
service T—

~ — Which corresponds to a starting point for /
- Why not advertise that with a URI template?
- For example:

— http://restbucks.com/signIn/{store id}/
erista 1d}

hanges infrequently
mportant to Restbucks

Isparent, and easy to bind to




Better Ideas for URI Templates: Documentation!

ervices tend to support \ | Internal URI
~ lots of resources R —

We need a shorthand for Templates
- talking about a large
- number of resources easily

Ve can u‘.?e a U”RI template etorel) /order/
or each “type” of orders {order id}
source that a service (or -~
es) supports
don’t share this
n with others
. g Jorder/
e encapsulation! {order_id}




application/xml is not the media type you’re looking for

)
\\

Remember that HTTP is an applicatic y

— Headers and representations are intertwined
— Headers set processing context for representato

~* Rememberthat application/xml has a particular
processing model

— Which doesn’t include understanding the semantics of
links

Remember if a representation is declared in the Content-
ype header, you must treat it that way

{TTP is an application protocol - did you forget already?

1 real hypermedia formats!




dia Formats




Two Common Hypermedia Formats: XHTML and ATOM

dli

‘are commonplace today
bth are hypermedia formats
— They contain links

f— A

" Both have a processing model that explicitly Su [

_f Which means both can describe protocols...




Default XML

namespace
Other XML
namespaces




What’s the big deal with XHTML?

ves two interesting thing

It gives us document structure
- 2. Itgivesuslinks
So?
1.  We can understand the format of those resources
2. We can discover other resources!
~ How?
. Follow the links!

ncode the resource representation as “normal” XML
1 your XHTML documents

this with the Atom and APP approach...similar!




IL in Action

Business data

“Hypermedia
Control”




application/xhtml+xml

an ask which verb the resource at tf
~ supports

— Via HTTP OPTIONS
No easy way to tell what each link actually does

— A
) [

— Does it buy the music?
— Does it give you lyrics?
- — Does it vote for a favourite album?

e lack semantic understanding of the linkspace and
sources

t we have microformats for that semantic stuff!
ntly XHTML is a hypermedia format

ins hypermedia controls that can be used to
otocols!




Atom Syndication Format

/e’ll study this in more
~ depth later, but for
now...

The application/atom
+Xxml media type is
nypermedia aware

ou should expect links
2N processing such
sent

Links to other resources,
a nascent protocol

HTTP/1.1 200

Content-Leng ;A /
Content-Type: applic
Date: Sun, 22 Mar 2009 0l ol

<entry xmlns="http://www.w3.0rg/2005/
Atom">

<title>Order 1234</title>

<link rel="payment" href="http://
restbucks.com/payment/1234" />

<link rel="special-offer"
ref="http://restbucks.com/offers/
freeCookie"/>

<id>http://restbucks.com/order/
1234</1id>

<updated>2009-03-22T16:57:027</
updated>

<summary>1lx Cafe Latte</summary>
entry>




application/atom+xml

ea Way to tell what each lii

- But look at the way the rel attribute i

— Can we inject semantics there?

Atom is a hypermedia format

~ — Both feeds and entries contains hypermedia controls
that can describe protocols




application/vnd. restbucks+xml

hat a mouthful! | |
The vnd namespace is for proprietary me.
F‘ — As opposed to the IANA-registered ones
- Restbucks own XML is a hybrid

— We use plain old XML to convey information
— And Atom 1ink elements to convey protocol

- This is important, since it allows us to create RESTful,
lypermedia aware services







Revisiting Resource Lifetime

the Web, the lifecycle of a sin;
— Creation
- — Updating
~ — Reading
— Deleting

Can also get metadata

— About the resource
- About its (subset of) the verbs it understands

‘as we see, resources tell us about other resources we
vant to interact with...







Describing Contracts with Links

e value of the Web is its “linked- 4

— Links on a Web page constitute a cont :
traversals

" The same is true of the programmatic Web

' Use Links to describe state transitions in programmatic
Web services

— By navigating resources you change application state
'Hypermedia formats support this

- Allow us to describe higher-order protocols which sit
comfortably atop HTTP

ceapplication/vnd.restbucks+xml







Links as APlIs

M xmlns="...">

1link rel="payment"
href="https://pay"
type="application/xml" />
IR e 1="postpone”
href="https://wishlist"
cype="application/xml" />

BNE rm>

Followir
an action to occt
This is the start of a
state machine!

Links lead to other
resources which also
have links

Can make this stronger
with semantics

— Microformats




-




Fa
Jﬁ.
»
.
W
»




Richardson Model Level 3

s of URIs that
ldress resources

nbraces HTTP as an
pplication protocol

h sentations and
dentity other




Structural versus Protocol

Jetural” REST e
‘Domain model broken up witt

\

Lazy loading, caching over the network
_ﬁ — Proliferation of media types?
“PrOtOCOl” REST This is where the cool kids are at
— Focus on media types as contracts
Protocol state transitions
| DAPs — Domain Application Protocols




Workflow and MOM

-

/ith Web Services we -
~ exchange messages with .
the service Order Drink
'Resource state is hidden
from view Add Specialities

®

“_onversation state is all
> know Order Confirm ation

\dvertise it with SSDL,
I8 Pay

interface, roles
OAP Coffee!

Starbuck’s Service




Hypermedia Describes Protocols!

inks declare next valid steps =
* Following links and inter; (ﬂ 250U _ /
~ application skate alpn\
. Media typ &e contr

o

 — Media ty efines
 — Links (with micr ‘
Don’t neMﬁt description Q
— No W 0
his is HALEOAS: “QQ
t’s see ho w ee at Restbucks.com...
d on:

NWW.iNToqg.com/articles/webber-rest-workflow

rans\y \ons




/permedia Protocols Span Services

Service

Unfollowed Link

resource
====2 avallable link not followed

link followed rt of
as parto

the state transitions
Followed Link

(o —
—

(&—q Service

réesource
\
Consumer

\
\
)
\
1
]
1
1
I
!
!
!




Workflow

Y

does a typical enterpris
Iemented in a Web- frlendly vay?

Let’s take Restbucks ordering servas an e \

happy path is:
- — Make selection

* Add any specialities
Pay
- Wait for a while
ollect drink




Static Interface and State Transitions

d
http://restbucks.com/order (crer;?cewrzrsoirrce)
POST ttp:// restbucks.com/order/1234 Up;afsazﬁzgioer:;i:?f; 'S
r -I order cancelled (only if

DELETE http://restbucks.com/order/1234 state is at “payment

https://restbucks.com/payment/1234 Payment accepted

Barista prepared order

' http://restbucks.com/order/1234 order received (only if state

a is at “ready”)
htt return latest representation

p://restbucks.com/order/1234

P of the resource
7 . ‘
\_..

S ° preparing ° e completed
pay

o =
expected T )

cancelled




9JIAJSS SHINC1SaY







2009 06:51:22 GM

)" encoding="UTF-8" st

v;"http://schemas.restbu‘




9JIAJSS SHINC1SaY







onfirm the Order




9JIAJSS SHINC1SaY




POST? Not PUT?

=

I expects the whole resou
ne request

- — Butour clients aren’t responsible for generat
hypermedia links

S PATCH would be better

— It allows us to send diffs, but isn’t part of the standard
yet

50 POST is our only option

. Compare this to our CRUD protocol in SOA 321




No Hypermedia
Controls?




. nge the Order

>://schemas.restbucks.c




Statelessness

ember interactions with re

he resource “forgets” about you while
~ interacting with it
Which means race conditions are possible
» Use If-Unmodified-Since on atimestamp to make

~ sure
~ — Oruse If-MatchandanETag

You'll geta4l2 PreconditionFailedifyou lost the

3ut you’ll avoid potentially putting the resource into
e inconsistent state




Warning: Don’t be Slow!

an only make changes until someor
rmk

.

— You’re safe if youuse I f-Unmodified- Sll’lce or
[ Match

— But resource state can change without you!

pltiest @ Response

‘order/1234 HTTP 1.1
409 Conflic

stbucks.com
: Too slow! Someone else has
changed the state of my order

© Response

34 HTTP 1.1 Allow: GET




/e want to cancel?

Client

Q
=
>
| -
()
(V]
(%)
Y4
O
>
O
)
(%)
)
(o'




» want to can




9JIAJSS SHINC1SaY
















9JIAJSS SHINC1SaY










9JIAJSS SHINC1SaY

.
)
B®)
| .

O
v
==
hd







ote the Order




9JIAJSS SHINC1SaY







No Hypermedia
Controls




) -
z
<
[
-
=
o
“J
)
=y
e
-
o
~J




What did we learn from Restbucks?

{ITTP has a header/status combinati  fc
 APIs are expressed in terms of links, and ir
— APP-esque APlIs

* APIs can also be constructed with URI templates and
~ inference

— A
) [

— But beware tight coupling outside of CRUD services!

XML is fine, but we could also use formats like Atom, JSON
or even default to XHTML as a sensible middle ground

tate machines (defined by links) are important
st as in Web Services...










Ordering and Payments Protocol Retrospective

\ario: | |

— The system is in production, and has de
~ successfully. What design decisions should w
for our next version?

Four categories:

— Introduce

| * New things we should do

— Do more of

) * Good things we should do more of
0 less of

oor things we should do less of

hings we should cease







Problem

t’s the solution for integrati

/stems?

*  Guidelines:

- Design applications in terms of applicatiohproto ol
state machines

— Implement them in terms of resource lifecycles

" = Advertise/document them using media types, link
~ relation values and HTTP idioms










GET /orders HTTP/1.1
Host: restbucks.com

HTTP/1.1 200 OK

Date:

Content-Length: ...

Content-Type: application/vnd.restbucks+xml




GET /orders/123/drinks HTTP/1.1
Host: internal.restbucks.com

HTTP/1.1 200 OK

Date:

Content-Length:

Content-Type: application/vnd.restbucks+xml
ETag: "1"




sates latte

POST /orders/123/drinks HTTP/1.1
Host: internal.restbucks.com
If-Match: "1"

HTTP/1.1 201 Created

Location: http://internal.restbucks.com/orders/123/drinks/1
Date:

Content-Length:

Content-Type: application/vnd.restbucks+xml




GET /orders/123/drinks HTTP/1.1
Host: internal.restbucks.com

HTTP/1.1 200 OK

Date:

Content-Length:

Content-Type: application/vnd.restbucks+xml
ETag: "2"




aates first cappuc

POST /orders/123/drinks HTTP/1.1
Host: internal.restbucks.com
If-Match: "2"

HTTP/1.1 201 Created

Location: http://internal.restbucks.com/orders/123/drinks/2
Date:

Content-Length:

Content-Type: application/vnd.restbucks+xml




GET /orders/123/drinks HTTP/1.1
Host: internal.restbucks.com

HTTP/1.1 200 OK

Date:

Content-Length:

Content-Type: application/vnd.restbucks+xml
ETag: "3"




GET /orders/123 HTTP/1.1
Host: restbucks.com

HTTP/1.1 200 OK

Date:

Content-Length:

Content-Type: application/vnd.restbucks+xml




1anges order

POST /orders/123 HTTP/1.1

Host: restbucks.com

Content-Type: application/vnd.restbucks+xml
Content-Length:

HTTP/1.1 200 OK

Date:

Content-Length: ...

Content-Type: application/vnd.restbucks+xml




POST /orders/123/drinks HTTP/1.1
Host: internal.restbucks.com
If-Match: "3"

HTTP/1.1 412 Precondition Failed




GET /orders/123/drinks HTTP/1.1
Host: internal.restbucks.com

HTTP/1.1 200 OK

Date:

Content-Length:

Content-Type: application/vnd.restbucks+xml
ETag: "4"




DELETE /orders/123/drinks/1
Host: internal.restbucks.com

HTTP/1.1 204 No Content
Date: ...




GET /orders/123/drinks HTTP/1.1
Host: internal.restbucks.com

HTTP/1.1 200 OK

Date:

Content-Length:

Content-Type: application/vnd.restbucks+xml
ETag: "5"




sates another capp

POST /orders/123/drinks HTTP/1.1
Host: internal.restbucks.com
If-Match: "5"

HTTP/1.1 201 Created

Location: http://internal.restbucks.com/orders/123/drinks/3
Date:

Content-Length:

Content-Type: application/vnd.restbucks+xml




GET /orders/123/drinks HTTP/1.1
Host: internal.restbucks.com

HTTP/1.1 200 OK

Date:

Content-Length:

Content-Type: application/vnd.restbucks+xml
ETag: "6"




GET /orders/123 HTTP/1.1
Host: restbucks.com

HTTP/1.1 200 OK

Date:

Content-Length:

Content-Type: application/vnd.restbucks+xml




mented protocol

Entry point
http://restbucks.com/orders

Media type

Application/vnd.restbucks+xml

Resources

Orders http://schemas.restbucks.com/orders | <status> element
indicates the order status.
Values are: created,
fulfilling, ready.

Order | http://schemas.restbucks.com/order | |

Drinks http://schemas.restbucks.com/drinks | <status> element
indicates the progress of
the prepared drinks.
Values are: started,
requires-amending,

completed.

http://schemas.restbucks.com/drink | |

Fulfilment is complete when the order status is ready, and the drinks status is
completed.

Link relations
Refers to a resource that can be
used to edit the link's context. To
edit an order, POST a new order to
the edit link. To remove a drink
from a list of drinks, DELETE the
linked resource.

http://relations.restbucks.com/fulfillment | Drinks that fulfil an order. The
linked resource is accompanied by
an ETag. Creating new drinks
should be done by conditionally
POSTing to the linked resource. If
the list of drinks requires amending
before a new drink can be added,
the service responds with 412
Precondition Failed.

http://relations.restbucks.com/order The order to which a list of drinks
belongs.






mzﬁm_ﬁzmm mnm&cm_f....
% |







Statelessness

s

ry action happens in isola
— This is a good thing! |
' In between requests the server knows nothing

 — Excepting any state changes you caused when you last
interacted with it.

Keeps the interaction protocol simpler
— Makes recovery, scalability, failover much simpler too

~ Avoid cookies!




Application vs Resource State

ful services hold peri ent da
— Resources are buckets of state |
— What use is Google without state? e
" Brittle implementations have application state
= They support long-lived conversations
- — No failure isolation

- — Poor crash recovery
— Hard to scale, hard to do fail-over fault tolerance

all stateless Web Services — same applies in the Web




User System Banking Service

Hello my name is Jim

What if there’s a failure

here? Hello Jim

What is my balance?

You have $150
—




Stateful Failure

User System

Hello my name is Jim

Hello Jim

Whatis my balance?

Antipattern

Who are you?




Stateless System Tolerates Intermittent Failures

User System

| am Jim, whatis my
balance?

You have $150




Scaling Horizontally

farms have delivered :/’

Though they sometimes do cleve hing
affinity to support cookie-based sessior

In the programmatic Web, statelessness enables scalak
— Just like in the Web Services world




Scalable Deployment Configuration




Scaling Vertically... without servers

//VV

nost expensive round-tr

- From client
— Across network
¥ — Through servers
~ — Across network again
— To database
— And all the way back!
le Web tries to short-circuit this
/ determining early if there is any actual work to do!
by caching




Caching

gls about scaling vertical

- As opposed to horizontally
Making a single service run faster |
- — Rather than getting higher overall throughput

‘,- In the programmatic Web it’s about reducing load on
servers

— And reducing latency for clients




Caching in a Scalable Deployment

-

‘reverse proxy) in fro
‘Avoid hitting the server
roxy at client domain
— Avoid leaving the LAN
Local cache with client

‘Avoid using the network




Back-end

L 0§

Database




Incoming information
pushes through

Internet

Scaling-out is

Cache replicates
naturally

Single source of
truth




e —

Performance wit

Internet




Internet

No need to
interact with

front-end




Internet

Conditional GET




Internet




> the cache out!

Cache peering




e —

e o'rwardihg

Internet




Being workshy is a good thing!

jide guard clauses in requests

Jetermine easily if there’s any work tc be
- — Cachestoo
Use headers:
— If-Modified-Since
I - None—-Match
- — And friends
Veb infrastructure uses these to determine if its worth
forming the request
.ften it isn’t

existing representation can be returned




Conditional GET Avoids Work!

ETag is an opaque
| identifier for specific
_— resource state

Bandwidth-saving pattern

- Requires client and server to work together

Server sends Last-Modified and/or ETdg headers w
representations

. Client sends back those values when it interacts with
resource in If-Modified-Since and/or If-None-
Match headers

Server responds with a 200 an empty body if there have
been no updates to that resource state

gives a new resource representation (with new Last -
fiedand/or ETag headers)




¥ a Resource Rep




Client’s representation of
the resource is up-to-date




other verbs t










Good Ole’ HTTP Authentication

TTP Basic and Digest Authentication:
- Have been around since 1996 (BaS|c)/199
Pros:

A — Respects Web architecture:
* stateless design (retransmit credentials)

* headers and status codes are well understood

— Does not prohibit caching (set Cache-Control to

bl ic)

ons:

asic Auth must be used with SSL/TLS (plaintext

sword)

{eal for the human Web — no standard logout
3 ay authentication (client to server)




HTTP Basic Auth Example

tial HTTP request to prc
SET /index.html HTTP/1.1
B cxample.org

- Server responds with

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic realm="MyRealm”

Client resubmits request
" GET /index.html HTTP/1.1
'Host: example.org

\uthorization: Basic Qm9iCnBhc3N3b3JkCg==

requests with same or deeper path can include the
Authorization header preemptively




ast Difference







Man-in-the-Middle

1TTP Authentication en
n-the-middle attack

* Canintercept a Digest response from a servi
it into a Basic challenge

{

. ail
e —

g—

Basic is easy to crack, attacker learns the password

- Transport level security considered mandatory when
- you’re using HTTP authentication of any variety




SSL/TLS

//77

rc ” server and optional cli
onfidentiality and integrity protectic

* The only feasible way to secure again |
- attacks -

'Not broken! Even if some people like to claim otherwise |

Not very cache friendly though...




Transport Level Security

/ =

is the successor to Netsc
ghtened up some security loopholes
 Now under IETF’s stewardship |
- — RFC2246
R RFC 5246

| Provides a secure channel between client and server
| - Authenticated
- Identified (bilateral too)
“‘nﬁdenﬁal
grity assured




with a TCP Handshake

Service
Consumer SYN + ACK




agotiate some cryptographic options

ClientHello

ServerHello Service
Consumer Y

ServerCertificate

ServerHelloDone




Switch on the crypto

oy -
angeCipherSpec

ClientKeyExchange

ChangeCipherSpec Service

Consumer
ClientFinished

ChangeCipherSpec

<

ServerFinished




Network and performance considerations

use HTTP everywhee. -
Reduces options for caching |
— Reverse proxies and client-side cachingonly

g—

 Expensive to set up connections

— Though relatively cheap to maintain, if you have enough
sockets

| Securing a channel on the risk/value profile of a resource
— Secure channels only for high value/risk resources
1 use a hybrid approach...




Publish secret data

are my bank acco

/

b0ff34c3ab9c2ad78cb7b8b61139a787bab5delb4

ec463db070e1b72c502114758f1afd44c09b799207

ccf00b43dc991579ddc5cbb91ea6984cbdal8bedf

seless to you, or anyone else, unless you know the
tion key




Widely publish secret data

Consumer

Atom Feed

Atom Entry

Atom Entry

Atom Entry

Consumer

Atom Entry

Atom Entry

Atom Entry

Atom Entry

Consumer

Atom Entry

Service




Secure messaging with Atom

he contents of individual atom:entry elé ‘
~encrypted with public/shared keys for spe /
‘ > Only consumers who know the corresponding priva
- shared key can make sense of the content

— To anyone else, it’s gibberish
« Keep the crypto strong!

— This will be in the public domain, beware brute force on
weak algorithms

an cache this widely, reduced performance hit
t beware coupling via keys!




OpeniD

DpeniD is a decentralised framework for
A

- — Not trust, just identity! —
Your have an OpenlD provider or one is provided for you
; B has a UR
- Services that you interact with will ask for that URI

Your OpenlD provider will either:
- — Accept the request for processing immediately

— Ask whether you trust the requesting site (e.g. via email
~with hyperlinks)

2 your OpenlD server OK’s the login, th

ticated against the remote service =~ Authenticating doesnt mean
. you’re authorised to do

anything!

This is not a trust system! |

our canonical credentials




OpenID Workflow

OpenlD Provider

Consumer 1. Initiation Ordering

Service

present Creden




Not-So-OpenliD?

re’s no trust between Ope

our Web service might not accept e y o}

- — In general it won’t!
Trusted providers centralise control
— Against the philosophy of decentralised ID!
Federated providers won’t interoperate
 — Need a hybrid “signing” model like CAs?




OAuth

Ve h-focused access delea on protocol
« Give other Web-based services access to sc “/
~ protected data without disclosing your credentials

Simple protocol based on HTTP redirection, cryptographic
hashes and digital signatures

Extends HTTP Authentication as the spec allows

— Makes use of the same headers and status codes

— These are understood by browsers and programmatic
- clients

t dependent on OpenlD, but can be used together




Find people you know on Facebook

Your friends on Facebook are the same friends, acquaintances and family members that you communicate
with in the real world. You can use any of the tools on this page to find more friends.

@ Find People You Email Upload Contact File

Searching your email address book is the fastest and most effective
way to find your friends on Facebook.

Your Email:

Password:

Find Friends

We won't store your password or contact anyone
without your permission.




OAuth Workflow

Consumer

Insurance -~ Insurance
Broker 3. Reject with authorisation token i ol

5. Loginto
4. Redirect to insurance provider and
insurance provider supply authorisation token
with authorisation token

6. Authoris
broker access t
existing policie







Denial of Service

_arge incoming representations
~ can cause problems

— DoS through memory consumption
on the server

- Usethe Content-Length
~header strictly

- — No header, bin payload
* 400 Bad Request

Stop processing payload after the
number of bytes in the header

1 payloads for suspiciously large
-
> wants a million cappuccinos?
“OfMemoryError
ryException
v they won!

- - /'.‘
POST /order HT ! y
Host: restbucks.cc ‘/

Content—Type:appliwf:d
+xml [

<order xmlns="http://
schemas.restbucks.com/order">

<location>takeAway</location>
<item>
<name>latte</name>
<quantity>1</quantity>
<milk>whole</milk>
<size>small</size>
</item>
<!-- Millions more item elements -->
<item>
<name>latte</name>
<quantity>1</quantity>
<milk>skim</milk>
<size>small</size>
</item>
</order>




Keep Secrets, Secret

1 can be a good guy, and help ,_

— E.g. 401
— Says there’s something interesting here!

g—

 Or you can be less helpful
- 404
- — Says there’s nothing to see here, even if there really is
Don’t use easily guessable URIs — they can be hijacked
— UUID is your friend

nk carefully about what attackers can learn from

on’t always want to be a good guy!




Act Defensively

alidate the content of
epresentations

- — Just over 2'¢ café lattes would be
quite lucrative

— Butis likely aruse to get a large

negative number into our
workflow

* Integer overflow?
Don’t forget anti-corruption
yering between your resources
d you domain model

REST is not mindlessly exposing a
)main over HTTP!

<order xml:

schemas.res
Order = .

<location>takeAway<' —
location>

<item>
<name>latte</name>
<quantity>
2147483648
</quantity>
<milk>whole</milk>
<size>small</size>
</item>

</order>




Don’t be gamed

/order/../../../../etc/passwd HTTP/1.1 GET /order/../. .' /
Host: restbucks.com Host: restbucks.com

Oh oh * Ohoh
* We just gave up the * We just generated a never-
- password file ending stream of bytes

- And rainbow tables * And now we’re going to
cracked it in no time spend all our time serving
them

ks help avoid these problems







Defend in Depth

e firewalls |
~ — Onthe network, and on the server
+ Do open ports 80 and 443 _
- — Do not open other ports
* Do not mistake HTTPS for security
- — It’s not enough!

Run at least privilege
- — Never run your service as root or administrator
eep good deployment hygiene
No lingering artifacts that attackers can grab hold of
 Deploy only the config files, DBs, etc that you need
nd remove what you don’t
nber that social engineering is still effective!







=

http //www.w3.0rg/2005/Atom
type="text">Inventory</title> .=
n:uuid:426830d2-abld-11dd-a9c5- c85155d89593< X
pdated>2008-09-10T14:50:00Z</updated>
uthor>
<name>Leicester Square</name>
<uri>http://restbucks.com/stores/1234</uri>
</author>
<link rel="self" href="http://restbucks.com/stores/1234/inventory"/>
<entry>
<id>urn:uuid: 95506d98-aae9-4d34-a8f4-1f£30bece80c</id>
<title type="text">Chocolate Chip Cookies</title>
<updated>2008-09-10T14:45:322</updated>
<content type="application/vnd.restbucks+xml">
<inventory xmlns="http://schemas.restbucks.com/inventory">
<product xmlns:a="http://www.w3.0rg/2005/Atom">
<a:link href="http://restbucks.com/product/9876" type="application/vnd.restbucks+xml"/>
</product>
<quantity>678</quantity>
</inventory>
{/content>
try>

n:uuid:7£fb82319-b190-46d2-bb88-c9fcce240643</id>
type="text">Fairtrade Coffee</title>
>2008-09-10T13:55:022</updated>
pe="application/vnd.restbucks+xml">
xmlns="http://schemas.restbucks.com/inventory">
ns:a="http://www.w3.0rg/2005/Atom">
="http://restbucks.com/product/211" type="application/vnd.restbucks+xml"/>

juantity>







| be standalone




AtomPub

Application protocol Mﬁ&é’ﬁ'&t

n stﬂgus codes,
| . he <!
resources

editing Web resources Atom

. envelope
HTTP transfer of

Atom-formatted representations







5 D
R gement oy

-
'U




stribution




Implementation options

oint-to-point -
 Publisher maintains subscriber list

~* Queues to reduce temporal coupling

Bus

* Subscriptions and guaranteed delivery delegated to
middleware

-+ Reduced location and temporal coupling

isumers pull events

nsumers poll publishers

nteed delivery delegated to consumers
'subscribers to maintain




Management

[

«

Atom Client

Product
Management




d represents an eve




" On the wire

Request

GET /products/notifications HTTP/1.1
Host: restbucks.com

Response

HTTP/1.1 200 OK

Cache-Control: max-age=60

Content-Length: 12230

Content-Type: application/atom+xml;charset="utf-8"

Content-Location: http://restbucks.com/products/notifications/2008/9/10/13
Last-Modified: Wed, 10 Sep 2008 13:50:32 GMT

ETag: "6a0806ca"

Date: Wed, 10 Sep 2008 13:51:03 GMT

<feed xmlns="http://www.w3.0rg/2005/Atom"><id>urn:uuid:be21lb6b0-57b4-4029-
adad4-09585ee74adc</id><title type="text">Product Notifications</
title><updated>2008-09-10T14:50:324+01:00</updated><author><name>Product Management</
name><uri>http://restbucks.com/products</uri></author><link rel="self" href="http://
restbucks.com/products/notifications/2008/9/10/13"/><1link rel="prev-archive"
href="http://restbucks.com/products/notifications/2008/9/10/12"/><entry><id>urn:uuid:
95506d98-aae9-4d34-a8f4-1ff30becel80c</id><title type="text">product created</
title><updated>2008-09-10T14:45:324+01:00</updated><link rel="self" href="http://
restbucks.com/products/notifications/95506d98-aae9-4d34-a8f4-1ff30beceB80c"/><category
term="product"/><category term="created"/><content type="application/xml"><product
xmlns="http://restbucks.com/products"




‘Retrieving the archive by following links

Request

GET /products/notifications/2008/9/10/12 HTTP/1.1
Host: restbucks.com

Response

HTTP/1.1 200 OK

Cache-Control: max-age=2592000

Content-Length: 9877

Content-Type: application/atom+xml;charset="utf-8"
Last-Modified: Wed, 10 Sep 2008 12:57:14 GMT

Date: Wed, 10 Sep 2008 13:51:46 GMT

<feed xmlns="http://www.w3.0rg/2005/Atom"><id>urn:uuid:4cbclOacf-a211-40ce-a50e-
a75d299571da</id><title type="text">Product Notifications</
title><updated>2008-09-10T13:57:144+01:00</updated><author><name>Product Management</
name><uri>http://restbucks.com/products</uri></author><link rel="self" href="http://
restbucks.com/products/notifications/2008/9/10/12"/><1link rel="current" href="http://
restbucks.com/products/notifications/2008/9/10/13"/><link rel="prev-archive"
href="http://restbucks.com/products/notifications/2008/9/10/11"/
><entry><id>urn:uuid:b436fda6-93f5-4c00-98a3-06b62c3d31b8</id><title
type="text">promotion cancelled</title><updated>2008-09-10T13:57:14+01:00</
updated><link rel="self" href="http://restbucks.com/products/notifications/
b436£fda6-93f5-4c00-98a3-06b62c3d31b8" /><category term="promotion"/><category
term="cancelled"/><content type="application/xml"><promotion xmlns="http://
restbucks.com/products" xmlns:atom="http://www.w3.0rg/2005/Atom"><atom:1link
type="application/xml"







entry represents :




iger re-polling

Request

GET /products/notifications HTTP/1.1
Host: restbucks.com
If-None-Match: "6a0806ca"

Response

HTTP/1.1 304 Not Modified
Date: Wed, 10 Sep 2008 13:57:20 GMT




Divide and conquer

http://restbucks.com/products/notifications/2008/9/10/12

T

http://restbucks.com/products/527.

promotion product




An Atom- and AtomPub-enabled service




archived feeds




oplication proto




"application/atom+xml"

Atom Publishing Protocol

"An IRI of an editable Member Entry.
When appearing within an atom:entry,
the href IRl can be used to retrieve,
update and delete the Resource
represented by that Entry."

rel="edit"
href="http://restbucks.com/products/notifications/2008/9/10/13"

type="application/atom+xml; type=entry"/>

Atom Syndication Format




Remember: "application/xml" is not your friend

application/xml

Processing model

It’s XML...

Namespace

Application-specific
hypermedia semantics

Documented
operations

XML Schema,
RELAX NG, etc




Custom media types

|ication/vnd.restbucks+xh’ﬁl" "

y

- Processing model

Hypermedia controls <atom:link/>

Registry of Link

Supported methods I

Representation

formats Media type for tuning the

hypermedia engine;
schema for structure




products/notifications
%;products/notifications/{year}/{month}/{day}/{hour}
{/products/notifications/{entry—id}
/products/{product-id}

products/{hardware-id}

Description

Archive
Notification
Product

Promotion

Caching

Long
Varies

Varies










Request

GET /products/notifications HTTP/1.1
Host: restbucks.com
Authorization: Basic aWFuc3JvY¥mluc29uOlBhdHQzcmdl==

Response

Cache-control: public, no-cache




Caching dilemma

Efficient use of network
resources

Publisher controls freshness
of data




Response

Cache-Control: max-age=60, channel="http://restbucks.com/products/channel/index",
channel-maxage







Web Architecture

uitous, global on-ram

onnects everything to everything, based
- addressable resources —
- — With a uniform interface

“Also provides standard coordination mechanism

— Status codes!
And is ambivalent about content
~ * Media types!







POX

2ats HTTP as a synchrn~ S trar

\

— Great because it gets through firewalls
» But again breaks expectations ‘
- — HTTPis not MOM!
Misses out on all the good stuff from the Web
- — Status codes for coordination
- — Caching for performance
— Loose coupling via hypermedia
Etc
s good as proper message-oriented middleware

are low-latency, reliable, etc.




CRUD Services

' plest kind of Web-based
nbraces HTTP and Web infrastructt e
— Four verbs, status codes, formats
 — Cacheable!

Can easily describe them

— URI templates
— WADL
it tightly couples client and server
ight not be a problem in some domains




Hypermedia

.\\

’s all about media types and link re
— Describe state machines with lots of I ely | r

Constrain what you can do to resources with the uniforn
interface

¢ Loosely coupled

— The server mints URIs to resources, clients follow them
— Easily spans systems/domains (URIs are great!)
Embraces the Web for robustness

— Verbs, status codes, caching

esign and implementation:

esign application protocol state machines;

lement resource lifecycles;

nent using media types, link relation values and
oms.







I~~~

\
l |




Transactions




Scalability

_ ihg you know s
- Stateless is good
— Horizontal is good

Yet everything you know no longer applies!

~ — Text-based synchronous protocol is scalable???
Do as little work as possible
— Make interactions conditional
~ + ETags and if-modified etc are your friends
ache!







Enterp’rlse security i
:awésome, but... .







Atom and AtomPub

//

n is format that describes

— In terms of feeds and entries

AtomPub is a protocol defined in terms Atom
links
- Together they can be used for very scalable pub/sub
— But latency is very high compared to enterprise pub/sub

— Caching enables massive scalability
" — But causes latency




REST In Practice

Hypermedia and Systems Architecture

O REILLY




