
Platforms Languages
and Packaging

Dave Tarrant, Les Carr,

davetaz,lac@ecs.soton.ac.uk

Electronics and Computer Science

Platforms

§ A Platform is a combination of Hardware and
Software.
–  Windows/x86
–  Linux/amd64

–  iPhone/ARM

§  Platform is also an environment in which
software can interact with other things:
–  E.g. a webcam, GPS, or files

2

Platforms

§ All have different APIs

§ All have different capabilities and
Limitations

§ Can come in many combinations

§ Can be freely configured to a limited or
unlimited extent

3

Languages

§ Each platform will prefer a different set of
software tools which can take full
advantage of all functionality

§  .NET for windows

§ C, C++ for Linux

§ Objective C + COCOA for OS X

4

Cross Platform

§  In order for something (including websites)
to be considered cross platform it must
function on more than one computer
architecture or operating system.

§ Time Consuming Task when the Platforms
are so varied.

§ Software written for an operating system
might not work on all architectures.

5

Choose the right language

§ Things like C and C++ are generally the
best languages for cross-platform. Will still
need to cross compile.

§ Keeps the application low level, fast and
with direct access to the platform.

6

Choose an Interpreted Language

§  Programming language in which programs are
'indirectly' executed

§  Can still compile code to be “native”.

§  In many cases there is little performance difference
between an interpretive- or compiled-based approach.

7

Interpreted Languages

§ Can be compiled into machine code

§ Can just be run, e.g. php, python

§ Can require a framework/runtime
environment to just-in-time compile

§  Java is a good example of an interpreted
language requiring JIT compilation and the
presence of a JVM. Time to start JVM is
often a killer for apps

8

Interpreted Langauges

§ Mostly have to be compiled for full cross
platform and even then only a limited
number of platforms may be supported.

§ Abstract the platform in many cases so loss
of full low level API access is lost.

§ Do your research before using!

9

Strategies

§ Choose a Platform and Stick with it
–  Simple, Limited Market, All your eggs in

someone elses basket

–  Very hard to switch!

–  No knowledge expansion

10

Multiple CodeBases

§ Most complicated

§ Most Expensive

§ Most Complete

§ Build a platform for Plug-ins

§ Example is Microsoft Office which is
actually 2 different versions.

11

Other Platforms

§ The Web
–  HTML5, Java-Script, JSON, REST, HTTP CRUD

§ Flash
–  If you don’t use flash for video (Not Mobile)

§  If you had to choose one which would it be.

12

Choosing Your Platform

§ NOT based upon your experience

§ Based on intended user experience

§ Don’t:
–  Make a location based application on a desktop
–  Make an application “online only” unless clear

–  Make a cross platform application if it can’t reach
your primary market.

13

Platform Diversity

§  Product testing of complex products becomes
difficult when the market is so diverse

§  Provides a demand for “support” services.

§ Open Android Market vs Closed Apple Market.
–  Both have a strong API but diversity of devices and

operating system support causes confusing
–  Conversely, when a problem hits an IOS device the

whole community is affected, support is greater.

–  On Android the user could feel isolated.

14

Discussion: User Experience

§  Pick a number of competing products (e.g. tablets)
and discuss the different user experiences provided by
each.
–  IS IT Google vs Apple?

–  OR IS IT Samsung, Amazon, Motorola etc (using Android) vs
Apple

§  Are these experiences consistent across all devices.
–  Which is the best Android tab experience, does it

matter to the user, how will it affect your product?

§  Does the “intended” functionality of the device (think
Kindle Fire) change the expected user experience.

15

Summary

§ Hard choices have to be made early

§ These should not just be based on your
own knowledge (e.g. I know java)

§ Should be based upon the needs of the
users and the platform with which they are
familiar.

§ Choosing the right target platform is key

16

Commonalities

§  The Web (as both a platform and part of the environment)
–  More on web technologies will be introduced later in the course

§  Source Code Control

§  Packaging
–  Each platform will have a standard/prefered mechanism for ‘one

click’ install.

§  “App Stores”
–  A place for packages

–  Package repositories with pretty front ends which make money.

–  Package Repositories have existed in Linux for years and are still
more advanced than the commercial ones.

–  Your coursework looks at one such example and tasks you with
building a package for inclusion in a package repository.

17

Software Development Essentials

§ Source Code Control

§ README

§ Ticketing System

§ Changelog

§ Packages & Downloads (not a zip)

Source Code Control

§  Fill this slide full of pictures of protocols, servers,
services.

§  svn

§  git

§  bzr

§  perforce

§  hg

§  cvs

Source Code Control

§ What is a tag?
–  A “tag” references a specific point in

history, e.g. an important point. Most use
tags for version releases.

§ What is a branch?
–  A parallel development of the software, not

a point in history, e.g. experimental vs.
stable. Code is then “merged”.

GIT

§  Distributed

§  Not dependent on network access
–  Great for coding on the train!

§  Strong Support for non-linear development
–  branching, merging

§  Scalable
–  Does not slow as the project history grows

§  Staging
–  Allows customized commit operations, e.g. a specific

set of files, sections of files. An entire commit can be
previewed.

Source Code and Tickets

§ Source code systems also contain many
good issue tracking systems.
–  Fixes #xxx

22

Source Code Systems and
Marketing

§ Source code systems are typically not the
best places for marketing a product

23

Finding Tools – Exiftool

24

Finding Tools – Exiftool

25

Marketing Your App

§ Make sure you can FIND it

§ Give away preview copies

§  Introductory Pricing

§ Market it! Tell as many people as possible
without annoying them.

§ Make it clear and pretty!

26

Summary

§ Use source code control properly
–  Write useful commit messages

–  Make commits small so they can be reversed
–  Make one commit to close a ticket, this will

automatically link to the ticket in most systems

–  Tag working versions for packaging

§  Package you App for easy installation

§ Realise that developers and users have
different needs, want to see different web
sites. 27

Package Platforms

§  Linux Platforms – Most Mature
–  Dependencies!

–  Upgrade and config management

–  Manuals

–  Examples

–  Easy to make mash ups!

§  Windows/Apple Apps
–  Apps are Sandboxed

–  Can require other packages but management is not clear

–  Fine for most things, not brilliant as servers.

28

CW1

§ CW1 – Packaging your software (Individual)
–  Use the reference code to build a debian/

ubuntu package.

–  Must use Revision Control (this will give

you a changelog)

–  Should use all other pacakging features

when applicable:
•  Man pages

•  Examples

•  Documentation 29

Building Pacakges

§ Debian/Ubuntu packaging uses many
config files to build a binary package

§ Redhat/Ferdora uses a single spec file

§  IOS/Android/WinPhone integration less
clear have to use specific tools.

Building Pacakges

§ All the systems are demanding and very
fussy about requirements.

§ This is done for a reason, they all called
package managers, so need to remain
manageable.

§ The Apple App Store is not the only
platform where reviews take place.
–  Debian requires a package sponsor.

File Structure
debian

 control

 copyright

 changelog

 rules

 dirs

 preinst/postinst

 prerm/postrm

Part1: control

§ The Package Management control file:
–  Name

–  Type

–  Priority

–  Maintainer

–  Dependencies!

Part2: copyright

§ Lists the copyright and license of the
upstream sources (i.e. the software)

§  If using a supported license, these are
already installed on the platform thus don’t
have to be listed in full.

Part 3: changelog

§ A changelog is one of the most useful ways to
communicate. It stays with the software.

§  Strictly speaking the deb.rpm changelog is
about changes to the package, not the
software provided by the package, often
confused however.

§ A changelog is better than no changelog.

§  In GIT you can’t differentiate the 2 easily,
hense why both paradigms are common.

Part 4: rules (deb)

§  Defines how to build and install the package from
source.

§  Basically another Makefile which is very debian
specific.

§  Handles:
–  Changelog
–  Man Pages
–  Config Files
–  Examples
–  udev
–  …

Part5: dirs (optional)

§ Specifies needed directories not created as
part of install. e.g. they exist already.

§ These directories may not exist in fakeroot
so listing them here is an easy way to cheat
fakeroot.

usr/share/software_name

etc/apache2/sites-available

preinst/postinst
§  Scripts to run prior to installation and after successful

installation.

§  Can check system state for compatability.

§  Can perform enable actions, like setting up a database
or restarting a service.

§  Are also run on upgrades.

§  Files have many conditional sections, like a Makefile.

http://www.debian.org/doc/debian-policy/ch-maintainerscripts.html

prerm/postrm

§  Same as preinst/postinst but run when
removing a package

§  In most cases these should perform the
opposite of the preinst/postinst scripts
leaving the system in a clean state from
which the installation scripts can be run
again.

http://www.debian.org/doc/debian-policy/ch-maintainerscripts.html

Getting Started

§ To create a set of template files:
–  Create a directory call my_app-1.0.0

–  Change into this directory

–  dh_make –-help

–  dh_make –s –n … (other options)

§ These can then be taken and used in your
package

§ dh_make can also be used on a specific
source code tarball. 40

Deb-Helper

§ Very useful commands which just do stuff
for you
–  dh_installman

–  dh_installdocs

–  dh_installexamples

–  dh_testroot

§ E.g. dh_installman installs any files listed in
package.manpages into the correct
manpage location on that platform.

41

Follow the rules.

§ The rules file is key

§ Put testing in here (using more of the
dh_commands)

§ These tests will throw very fussy, but
accurate errors

42

Use Lintian

§ Lintian dissects Debian packages and tries
to find bugs and policy violations.

§  It contains automated checks for many
aspects of Debian policy.

§ Checks for common errors

§ Package will not be sponsored (or get as
many coursework marks) if it is not “Lintian
Clean”

43

Summary

§  Package files only need to be written once (but kept up
to date for dependencies etc)

§  Be careful to separate software build from package
build requirements, the two are different.

§  Use the deb-helper scripts

§  Use Lintian.

§  Fulfil all the requirements and more as you will feel
much better later.

§  Enjoy the time when it first compiles as a package!
44

