UNIVERSITY OF

Southampton

Platforms Languages
and Packaging

Dave Tarrant, Les Carr,

davetaz,lac@ecs.soton.ac.uk
Electronics and Computer Science



Platforms

= A Platform is a combination of Hardware and
Software.
— Windows/x86
— Linux/amd64
— iPhone/ARM

= Platform is also an environment in which
software can interact with other things:
— E.g. a webcam, GPS, or files



Platforms

= All have different APIs

= All have different capabilities and
Limitations

= Can come in many combinations

= Can be freely configured to a limited or
unlimited extent



Languages

» Fach platform will prefer a different set of
software tools which can take full
advantage of all functionality

= NET for windows
» C, C++ for Linux

= Objective C + COCOA for OS X



Cross Platform

» [n order for something (including websites)
to be considered cross platform it must
function on more than one computer
architecture or operating system.

* Time Consuming Task when the Platforms
are so varied.

= Software written for an operating system
might not work on all architectures.



Choose the right language

» Things like C and C++ are generally the
best languages for cross-platform. Will still
need to cross compile.

» Keeps the application low level, fast and
with direct access to the platform.



Choose an Interpreted Language

= Programming language in which programs are
'indirectly’ executed

= Can still compile code to be “native”.

* |n many cases there is little performance difference
between an interpretive- or compiled-based approach.



Interpreted Languages

= Can be compiled into machine code

= Can just be run, e.g. php, python

= Can require a framework/runtime
environment to just-in-time compile

» Java is a good example of an interpreted
anguage requiring JIT compilation and the
oresence of a JVM. Time to start JVM is
often a killer for apps




Interpreted Langauges

= Mostly have to be compiled for full cross
platform and even then only a limited
number of platforms may be supported.

» Abstract the platform in many cases so loss
of full low level API access is lost.

= Do your research before using!



Strategies

» Choose a Platform and Stick with it

— Simple, Limited Market, All your eggs in
someone elses basket

— Very hard to switch!
— No knowledge expansion

10



Multiple CodeBases

» Most complicated

= Most Expensive

= Most Complete

= Build a platform for Plug-ins

= Example is Microsoft Office which is
actually 2 different versions.

11



Other Platforms

» The Web
— HTMLS, Java-Script, JSON, REST, HTTP CRUD

= Flash
— If you don’t use flash for video (Not Mobile)

* |f you had to choose one which would it be.

12



Choosing Your Platform

= NOT based upon your experience
= Based on intended user experience

= Don’t:
— Make a location based application on a desktop
— Make an application “online only” unless clear

— Make a cross platform application if it can’t reach
your primary market.

13



Platform Diversity

» Product testing of complex products becomes
difficult when the market is so diverse

= Provides a demand for “support” services.

= Open Android Market vs Closed Apple Market.

— Both have a strong API but diversity of devices and
operating system support causes confusing

— Conversely, when a problem hits an IOS device the
whole community is affected, support is greater.

— On Android the user could feel isolated.

14



Discussion: User Experience

= Pick a number of competing products (e.g. tablets)
and discuss the different user experiences provided by
each.
— IS IT Google vs Apple?

— OR IS IT Samsung, Amazon, Motorola etc (using Android) vs
Apple

= Are these experiences consistent across all devices.

— Which is the best Android tab experience, does it
matter to the user, how will it affect your product?

= Does the “intended” functionality of the device (think
Kindle Fire) change the expected user experience.

15



Summary

= Hard choices have to be made early

= These should not just be based on your
own knowledge (e.g. | know java)

= Should be based upon the needs of the
users and the platform with which they are
familiar.

= Choosing the right target platform is key

16



Commonalities

The Web (as both a platform and part of the environment)
— More on web technologies will be introduced later in the course

Source Code Control

Packaging

— Each platform will have a standard/prefered mechanism for ‘one
click’ install.

“App Stores”
— A place for packages
— Package repositories with pretty front ends which make money.

— Package Repositories have existed in Linux for years and are still
more advanced than the commercial ones.

— Your coursework looks at one such example and tasks you with
building a package for inclusion in a package repository.

17



Software Development Essentials

» Source Code Control

= README

» Ticketing System
= Changelog

» Packages & Downloads (not a zip)



Source Code Control

= Fill this slide full of pictures of protocols, servers,
services.

. git PERFORCE
& Version everything.

'bzr SUBVERSION

= perforce

= hg
" CVS



Source Code Control

= What is a tag?

— A “tag” references a specific point in
history, e.g. an important point. Most use
tags for version releases.

» What is a branch?

— A parallel development of the software, not
a point in history, e.g. experimental vs.
stable. Code is then “merged”.



GIT

= Distributed

Not dependent on network access
— Great for coding on the train!

Strong Support for non-linear development
— branching, merging

Scalable
— Does not slow as the project history grows

Staging

— Allows customized commit operations, e.g. a specific
set of files, sections of files. An entire commit can be
previewed.



Source Code and Tickets

= Source code systems also contain many
good issue tracking systems.

— Fixes #xXxX

22



Source Code Systems and
Marketing

= Source code systems are typically not the
best places for marketing a product

SOUrCBfOrge |rind Open Source Software ‘ Browse Blog Supp Jobs Newsl Resources Register LogIn
Your DROID download wil start in 3 seconds... IR = s ket

Problems with the download? Check your browser's security bar, ortry a direct link, or try another e
mirror.

Time saving
accounting

Download NG
QuickBooks g o )

Online - ———
@ Easy invoicing Try It Free
@ Tracksales &
expenses
@ munere infurt

anytime access
I

Introducing Microsoft Office 365
Work together in the cloud - with Office,

3
Exchange, SharePoint and Lync video e OO
conferencing, it all works together. Office 365
idol

G

BPMonline CRM
wins CRM Idol 2001!




Finding Tools - Exiftool

G()Ugle exiftool

Search About 3,440,000 results (0.11 seconds)
Everything ExifTool by Phil Harvey
www.sno.phy.queensu.ca/~phil/exiftool/ »
Images A Perl application and library for reading and writing EXIF, GPS, IPTC, XMP,
Maps makernotes and other meta information in image, audio and video files.
Installing ExifTool ExifTool Tag Names
Videos In Windows, there is a choice of two A Tag Name is the handle by which
different versions of ... the information is ...
News
Shopping ExifTool GUI ExifTool FAQ
The only downside for many When you run exiftool, by default it
More potential users is the fact, that ... prints descriptions, not ...
Exiftool Application ... ExifTool Version History
Southampton, UK A command-line interface to Affected XMP is repaired by re-
Image::ExifTool, used for ... writing any element of the ...

Change location

More results from queensu.ca »
The web
Pages from the UK ExifTool - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/ExifTool
ExifTool is a free software program for reading, writing, and manipulating image,
Any time audio, and video metadata. It is platform independent, available as both a Perl ...
Past hour




Finding Tools - Exiftool

Google
Search

Everything
Images
Maps
Videos
News
Shopping

More

Southampton, UK
Change location

The web
Pages from the UK

Any time
Past hour

exiftool

yout 3,440,000 results (0.11 seconds)

AD

3 > =|m

er
E
ay

Installing ExifTool

See the appropriate section below with instructions for installing or uninstalling ExifTool on your specific platform:

« Windows
« Macintosh OS X
- Unix Platforms

Also see these instructions for help running ExifTool.

Windows

In Windows, there is a choice of two different versions of ExifTool to install. The Perl distribution requires Perl to be
installed on your system. (A good, free Perl interpreter can be downloaded from activeperl.com.)

If you don't already have Perl, it is easier to install the stand-alone ExifTool executable, but note that the stand-alone
version doesn't include the HTML documentation or some other files of the full distribution.

Stand-Alone Executable

1. Download the Windows Executable from the ExifTool home page.
(The file you download will have a name like "exiftool-#.##.zip")

2. Extract "exiftool (-k) .exe" from the ". zip" file, and place it on your Desktop.

25



Marketing Your App

= Make sure you can FIND it
= Give away preview copies
= [ntroductory Pricing

= Market it! Tell as many people as possible
without annoying them.

= Make it clear and pretty!

26



Summary

= Use source code control properly

— Write useful commit messages
— Make commits small so they can be reversed

— Make one commit to close a ticket, this will
automatically link to the ticket in most systems

— Tag working versions for packaging
= Package you App for easy installation

= Realise that developers and users have
different needs, want to see different web

sites.

27



Package Platforms

* Linux Platforms - Most Mature
— Dependencies!
— Upgrade and config management
— Manuals
— Examples
— Easy to make mash ups!

= Windows/Apple Apps
— Apps are Sandboxed
— Can require other packages but management is not clear
— Fine for most things, not brilliant as servers.

28



CWi

» CW1 - Packaging your software (Individual)
— Use the reference code to build a debian/
ubuntu package.
— Must use Revision Control (this will give
you a changelog)
— Should use all other pacakging features

when applicable:
* Man pages

e Examples

e Documentation

29



Building Pacakges

= Debian/Ubuntu packaging uses many
config files to build a binary package

= Redhat/Ferdora uses a single spec file

= |OS/Android/WinPhone integration less
clear have to use specific tools.



Building Pacakges

= All the systems are demanding and very
fussy about requirements.

* This is done for a reason, they all called
package managers, so need to remain
manageable.

= The Apple App Store is not the only
platform where reviews take place.

— Debian requires a package sponsor.



File Structure
debian

— control
—— copyright
- changelog
— rules

— dirs

__ preinst/postinst

L prerm/postrm



Partl: control

= The Package Management control file:
— Name
— Type
— Priority
— Maintainer
— Dependencies!



Part2: copyright

= |ists the copyright and license of the
upstream sources (i.e. the software)

» |f using a supported license, these are
already installed on the platform thus don’t
have to be listed in full.



Part 3: changelog

= A changelog is one of the most useful ways to
communicate. It stays with the software.

= Strictly speaking the deb.rpm changelog is
about changes to the package, not the
software provided by the package, often
confused however.

= A changelog is better than no changelog.

* In GIT you can’t differentiate the 2 easily,
hense why both paradigms are common.



Part 4: rules (deb)

= Defines how to build and install the package from
source.

= Basically another Makefile which is very debian
specific.

= Handles:
— Changelog
— Man Pages
— Config Files
— Examples
— udev



Part5: dirs (optional)

= Specifies needed directories not created as
part of install. e.g. they exist already.

= These directories may not exist in fakeroot
so listing them here is an easy way to cheat
fakeroot.

usr/share/software_name
etc/apache?2/sites-available



preinst/postinst

= Scripts to run prior to installation and after successful
installation.

= Can check system state for compatability.

= Can perform enable actions, like setting up a database
or restarting a service.

= Are also run on upgrades.

* Files have many conditional sections, like a Makefile.

http://www.debian.org/doc/debian-policy/ch-maintainerscripts.html



prerm/postrm

= Same as preinst/postinst but run when
removing a package

* |[n most cases these should perform the

opposite of the

oreinst/postinst scripts

leaving the system in a clean state from

which the instal
again.

ation scripts can be run

http://www.debian.org/doc/debian-policy/ch-maintainerscripts.html



Getting Started

= To create a set of template files:
— Create a directory call my_app-1.0.0
— Change into this directory
— dh_make --help
— dh_make -s -n ... (other options)

= These can then be taken and used in your
package

» dh_make can also be used on a specific
source code tarball. &



Deb-Helper

= Very useful commands which just do stuff
for you

Q O O O

n_insta
n_insta
n_insta

man
docs
examples

n_testroot

= E.g. dh_installman installs any files listed in
package.manpages into the correct
manpage location on that platform.

41



Follow the rules.

= The rules file is key

= Put testing in here (using more of the
dh_commands)

» These tests will throw very fussy, but
accurate errors

42



Use Lintian

= Lintian dissects Debian packages and tries
to find bugs and policy violations.

» [t contains automated checks for many
aspects of Debian policy.

* Checks for common errors

= Package will not be sponsored (or get as
many coursework marks) if it is not “Lintian
Clean”

43



Summary

Package files only need to be written once (but kept up
to date for dependencies etc)

Be careful to separate software build from package
build requirements, the two are different.

Use the deb-helper scripts
Use Lintian.

Fulfil all the requirements and more as you will feel
much better later.

Enjoy the time when it first compiles as a package!
44



