
52 communications of the acm | february 2009 | vol. 52 | no. 2

contributed articles

From its inception as a global hypertext system,
the Web has evolved into a universal platform for
deploying loosely coupled distributed applications.
As we move toward the next-generation Web
platform, the bulk of user data and applications
will reside in the network cloud. Ubiquitous access
results from interaction delivered as Web pages
augmented by JavaScript to create highly reactive
user interfaces. This point in the evolution of the
Web is often called Web 2.0. In predicting what
comes after Web 2.0—what I call 2W, a Web that
encompasses all Web-addressable information—I
go back to the architectural foundations of the Web,
analyze the move to Web 2.0, and look forward to
what might follow.

For most users of the Internet, the Web is
epitomized by the browser, the program they use to log
on to the Web. However, in its essence, the Web, which
is both a lot more and a lot less than the browser, is
built on three components:

URL. A universal means for identify-
ing and addressing content6,7;

HTTP. A protocol for client-server
communication5; and

HTML. A simple markup language
for communicating hypertext content.8

Together, they constitute the global
hypertext system. This decentralized
architecture35 was designed from the
outset to create an environment where
content producers and consumers
come together without everyone having
to use the same server and client. To
participate in the Web revolution, one
needed only to subscribe to the basic
architecture of Web content delivered
via HTTP and addressable via URLs.
This yielded the now well-understood
network effect that continues to pro-
duce exponential growth in the amount
of available Web content. In the 1990s,
the browser, a universal lens for view-
ing the Web, came to occupy center
stage as the Web’s primary interface.
Deploying content to users on multiple
platforms was suddenly a lot simpler;
all one needed to enable universal ac-
cess was to publish content to the Web.
Note that this access was a direct con-
sequence (by design) of the underlying
Web contract, whereby Web publishers
are isolated from the details of the cli-
ent software used by their consumers.
As Web browsers began to compete on
features, this began to change in what
became known as the browser wars,
1995–199936; browser vendors com-
peted by introducing custom tags into
their particular flavors of HTML. This
was perhaps the first of the many bat-
tles that would follow and is remem-
bered today by most Web developers as
the blink and marquee tag era marked
by visual excess.

In 1997, HTML 3.2 attempted to
ease the life of Web developers by
documenting the existing authoring
practice of the time. HTML 3.2 was in
turn followed by HTML428 as a base-
line markup language for the Web. At
the same time, Cascading Style Sheets
(CSS)9 were introduced as a means of
separating presentational informa-
tion (style rules) from Web-page con-

doi:10.1145/1461928.1461945

2W is a result of the exponentially growing
Web building on itself to move from a Web
of content to a Web of applications.

by T.V. Raman

Toward 2w,
Beyond
Web 2.0

february 2009 | vol. 52 | no. 2 | communications of the acm 53

tent. CSS enabled Web developers to
flexibly style their content and was in
part responsible for reducing their
urge to invent new HTML tags purely to
achieve a particular visual effect. But by
1998–1999, the browser wars were all
but done, with Web developers coding
mostly to the then-dominant browser,
Microsoft’s Internet Explorer 5. New
features were no longer necessarily ex-
posed via new tags in the HTML vocab-
ulary; with CSS, a developer could easi-

ly create new presentational structures
using the generic div and span tags.
The behavior of constructs appearing
in Web pages could be customized via
JavaScript18 and the HTML Document
Object Model (DOM).2,23 Thus, as the
browser wars came to a close with the
Web appearing to settle on HTML4, the
Web community was already inventing
a new highly interactive Web.

On the negative side, the dominance
of a single browser during this period

meant that all new behavior outside
the scope of the HTML4 specification
was implemented based on Internet
Explorer; worse, that implementation
in turn was a result of reverse engineer-
ing various features from the previ-
ously popular Netscape browser. This
was particularly true with respect to
interactive elements created through
JavaScript and the HTML DOM, while
incompatibilities between the CSS
specifications and the predominant

The self-similar repeating nature of fractals is a metaphor for the growth of the entire Web. This image by Jared Tarbell is a revisualization of
the familiar Mandelbrot set; www.complexification.net/gallery/machines/buddabrot/.

i
m

a
g

e
 b

y
 J

a
r

e
d

 t
a

r
b

e
l

l

54 communications of the acm | february 2009 | vol. 52 | no. 2

contributed articles

of Web browsers did not immediately
hamper growth. But the increasing
interdependency between creator and
consumer was not without cost; de-
spite high hopes, the first round of the
mobile Web fizzled in early 2000 partly
because it was impossible to support
mainstream Web content authored
for a desktop browser on small devices
like cellphones and PDAs. The prob-
lems that resulted from Web authors
coding to a particular browser involved

implementation within Internet Ex-
plorer made it virtually impossible for
Web developers to create content that
would play consistently across mul-
tiple browsers.

Note that this period also saw sig-
nificant movement away from Tim
Berners-Lee’s original vision of the
Web. Web authors had started down
the slippery slope of authoring for
the dominant browser, thereby los-
ing sight of the Web contract that had

carefully arranged for Web content to
be independent of the software that
consumed it.

This breach might have seemed
insignificant at the time, at least with
respect to deploying Web content. The
network effect that led to exponen-
tial growth in Web content during the
1990s meant that the Web had already
taken off and that the slowdown in the
network effect resulting from content
coming to depend on a particular class

Dreams 243.06260 and 243.06540 (page 58) were created by software artist Scott Draves through an evolutionary algorithm running on a
worldwide cyborg mind consisting of 60,000 computers and people; ScottDraves.com.

i
m

a
g

e
 b

y
 S

c
o

t
t

 D
r

a
v

e
s

contributed articles

february 2009 | vol. 52 | no. 2 | communications of the acm 55

additional hidden costs that became
obvious by 2002 with the move from
Web content to Web applications. By
then, HTML, which began as a simple
markup language, had evolved into
three distinct layers:

HTML4. The markup tags and at-
tributes used to serialize HTML docu-
ments;

CSS. The style rules used to define
the presentation of a document; and

DOM. The programmatic interface
to the parsed HTML document, used
to manipulate HTML from within
JavaScript.

The HTML4 specification went only
so far as to define the tags and attributes
used to serialize HTML documents. The
programmatic API—the DOM—was
defined within a separate specification
(DOM 2) and never fully implemented
by Internet Explorer. Making matters
worse, CSS 2 was still under construc-
tion, and only parts of CSS 1 had been
implemented in Internet Explorer.

Authoring Web content was now
fraught with risks that would become
apparent only over time. Authors
could, with some trouble, create Web
pages that appeared the same on the
browsers of the time, at least with re-
spect to visual presentation. However,
when it came to styling the layout of a
document via CSS or attaching interac-
tive behavior via DOM calls, the shape
of the underlying parsed representa-
tion proved far more significant than
just visual appearance on a screen. As
Web developers increasingly sought
to add visual style and interactivity to
their Web pages, they discovered in-
compatibilities:

Visual layout. To achieve a consis-
tent visual layout, Web authors often
had to resort to complex sets of HTML
tables; and

Inconsistent DOM. Programmatic ac-
cess of the HTML DOM immediately
exposed the inconsistencies in the
underlying representation in brows-
ers, meaning that such programmatic
calls had to be written for each browser
and moved the Web further down the
slippery slope toward browser-specific
content.

But even as the hard-won Web
looked like it would be lost to browser-
specific Web content, the Web commu-
nity was building on its earlier success
of having a widely deployed universal

browser that could be controlled (if
poorly) via HTML and JavaScript. The
Web had moved from mostly static
content to documents with embedded
pieces of interactivity. Web developers
soon came to exploit the well-known
fact of client-server computing: that
even in a world of powerful servers,
there are more compute cycles per
user on a client than there are compute
cycles on a server. Islands of interactiv-
ity implemented via JavaScript within
HTML evolved into highly interactive
user interfaces. The introduction of
XML HTTP Request (XHR)34 across the
various browsers freed Web developers
from having to do a complete page re-
fresh when updating the user interface
with new content. This set the stage
for Asynchronous JavaScript and XML
(AJax) applications.19

Discovering Web Applications
From late 1999 to early 2004, the line
between content and applications on
the Web was increasingly blurred. As
examples, consider the following static
(document-oriented) content and in-
teractive (dynamic) applications:

Online news. News stories delivered
in the form of articles enhanced with
embedded video clips and interactive
opinion polls; and

Shopping. Shopping catalogs with
browsable items with interfaces, as well
as real-time auction sites, enabling us-
ers to buy and sell.

This evolution from Web content to
Web applications was accompanied by
the progressive discovery of the Web
programming model consisting of four
Web components:

HTML. Markup elements and attri-
butes for serializing Web pages;

CSS. Style rules for determining the
final visual presentation;

DOM. Programmatic access to the
parsed representation of the Web
page; and

JavaScript. Open-ended scripting of
the Web page through the DOM.

Here, the HTML, DOM, and
JavaScript formed the underlying as-
sembly language of Web applications.
Though there is a clean architectural
separation among content, visual-pre-
sentation, and interaction layers, note
that this programming model was dis-
covered through Darwinian evolution,
not by design. A key consequence of

this phenomenon is that content on
the Web does not necessarily adhere
to the stated separation. As a case in
point, one still sees the HTML content
layer sprinkled with presentational font
tags, even though one would expect
CSS to exclusively control the final pre-
sentation. Similarly, the content layer
(HTML) is often sprinkled with script
fragments embedded within the con-
tent, either in the form of inline script
elements or as the value of HTML attri-
butes (such as href and onClick).

Another key aspect of this phase of
Web evolution was the creation of Web
artifacts from Web components. Think
of them as online information compo-
nents built from Web-centric technol-
ogies—HTML, CSS, JavaScript—ac-
cessed over the network via URLs (see
the figure here). A user-configurable
component includes a customizable
greeting, along with a photograph. Note
that all of its aspects are constructed
from five basic Web technologies:

Metadata. Component metadata en-
capsulated via XML;

Presentation. Content to be present-
ed to the user encoded as plain HTML;

Style. The visual presentation of the
HTML, controlled via CSS;

Interaction. Runtime behavior spec-
ified by attaching a JavaScript event
handler (script) that computes the ap-
propriate greeting based on the user’s
preferences and updates the HTML
with the appropriate content; and

URLs. All resources used by the com-
ponent—the photograph, the CSS style
rules, the set of script functions—are
fetched via URLs.

Toward Web 2.0
The first phase of the Web—Web
1.0—concluding in 2000 was character-
ized by bringing useful content online
through the application of Web tech-
nologies to information (such as weath-
er forecasts) in order to make them
available on the Web to millions of po-
tential users worldwide. A consequence
was that a vast amount of useful content
was now available—addressable via
URLs and accessible over HTTP—with
the requisite content being delivered
via HTML, CSS, and JavaScript.

The next phase of this evolution—
Web applications—saw the creation of
useful end-user artifacts out of content
already available on the Web. As an ex-

56 communications of the acm | february 2009 | vol. 52 | no. 2

contributed articles

equivalent, each of these services
lived on the Web and, more impor-
tant, exposed the services as simple
URLs, an idea later known as REpre-
sentational State Transfer, or (REST)
ful, Web APIs.16,17 All such services not
only built themselves on the Web, they
became an integral part of the Web
in the sense that every Google search,
auction item on eBay, and item for sale
on Amazon were URL addressable (see
the table here).

URL addressability is an essential
feature of being on the Web. The URL
addressability of the new services laid
the foundation for Web 2.0, that is, the
ability to build the next generation of
solutions entirely from Web compo-
nents. The mechanism of passing-in
parameters via the URL defined light-
weight Web APIs. Note that in contrast
to all earlier software APIs, Web APIs
defined in this manner led to loosely
coupled systems. Web APIs like those
in the table evolved informally and
came to be recognized later as pro-
gramming interfaces that could be
used to build highly flexible distribut-
ed Web components.

That all of these services heralded
publication of a new platform was re-
flected in the O’Reilly Hacks Series, in-
cluding: Google Hacks10; Amazon Hacks4;
Yahoo! Hacks3; and eBay Hacks.22

The Web had thus evolved from a
Web of content to a Web of content
embedded with the needed user-in-
teraction elements. Content embed-
ded with user interaction evolved into
Web applications that could over time
be composed exclusively from Web
components. Being built this way and
living exclusively on the Web, the new
software artifacts came to form the
building blocks for the next genera-
tion of the Web. Together, they define
the Web as a platform with certain key
characteristics:

Distributed. Web applications were
distributed across the network; appli-
cation logic and data resides on the
network, with presentation augmented
by the needed user interaction deliv-
ered to the browser;

Separable. The distributed nature
of Web applications forced a cleaner
separation between application logic
and the user interface than in the pre-
vious generation of monolithic desk-
top software;

ample, weather forecasts were available
on Web 1.0, but XML HTTP Request
and the ability to asynchronously re-
fresh the content displayed in a Web
page through JavaScript callbacks en-
abled Web sites to integrate weather
forecasts into the context of user tasks
(such as travel reservations). In addition
to being built from Web technologies,
a travel site that integrates a variety of
information sources in order to deliver
a complete task-oriented interface uses
the same Web technologies when con-
structing its constituent components.
Note that Web 2.0 is a result of apply-
ing Web technologies to the Web. De-
scribed differently, Web 2.0 is a conse-

quence of Web(Web()); or writing W for
the function Web, a more apt notation
for Web 2.0 would be W2.

Web As Platform
The notion of the Web as a new plat-
form emerged in the late 1990s with
the advent of sites providing a range
of end-user services exclusively on the
Web. Note that none of them had a par-
allel in the world of shrink-wrap soft-
ware that had preceded the Web:

Portal. Yahoo! Web directory;
Shopping. Amazon online store;
Auction. eBay auction site; and
Search. Google search engine.
In addition to lacking a pre-Web

Web gadget built entirely from Web components—HTML, CSS, and JavaScript—displays
a greeting and photograph both customizable by the user; the photograph is accessed
via a URL.

<?xml version=”1.0” encoding=”UTF-8” ?>
<Module>
<ModulePrefs title=”...”/>
<UserPref name=”myname”/>
<UserPref name=”myphoto”/>
<Content type=”html”><![CDATA[
<div id=”content_div”></div>
<style type=”text/css”>...</style>
<script type=”text/javascript”>
// Get userprefs
var prefs = new gadgets.Prefs();
function greet () {

// Get current time
var today = new Date();
var time = today.getTime();
var html = “”;
// Display appropriate greeting
html += ...
// Display photo if asked to
if (prefs.getBool(“photo”) == true) {
html += ...
}
element.innerHTML = html;
}
...
gadgets.util.registerOnLoadHandler(greet);

</script>
]]>

</Content>
</Module>

RESTful Web APIs from major Web applications laid
the software foundations for Web 2.0.

Service Resource

Amazon XForms Book

Google Search Hubbell+Labrador

eBay ASTER

Yahoo! Browse Autos

contributed articles

february 2009 | vol. 52 | no. 2 | communications of the acm 57

Universal. By delivering presen-
tation and user interface to a Web
browser, Web applications were
more universally available than were
their earlier counterparts; coding to
the Web platform—or using HTML,
JavaScript, and CSS21—enabled de-
velopers to create user interfaces that
could be consistently accessed from a
variety of platforms;

Zero install. With user-interface en-
hancements delivered via the network,
users did not need to install Web appli-
cations; and

Web APIs. Web applications exposed
simple URL-based APIs that evolved
bottom-up that were easy to develop,
document, and learn and quickly be-
came a key enabler for Web 2.0.

User-Centric Access
As increasing amounts of information
was moved onto the Web in the late
1990s, end users had a problem: To ac-
cess all the information required for a
given task, they needed to connect to
myriad Web sites. This was true on the
public Internet, as well as on corporate
intranets. Moreover, the information
being accessed had to be customized
for the user’s context (such as desktop
or mobile access). The desire to deliver
user-centric information access led to
the binding of mobile user interfaces
to Web content, another example of
specialized browsing.29,33

A user interface designed for a large
display is inappropriate for viewing on
small-screen devices like cellphones
and PDAs. The distributed nature of
Web applications—and consequent
separation of the user interface—en-
abled Web developers to bind special-
ized mobile user interfaces.

At the same time, the need to pro-
vide a single point of access to oft-used
information led to portal sites that
aggregated all the information onto
a single Web page. In this context,
the various items of information can
be viewed as lightweight Web com-
ponents. The environment in which
these components are hosted (such as
the software that generates and man-
ages the Web page) can be viewed as a
Web container. Thus, common actions
(such as signing in) were refactored to
be shared among the various Web ap-
plications hosted by the Web contain-
er, a piece of software managing the

user’s browsing context.
Web components hosted in this

manner relied on the underlying Web
APIs discussed earlier to retrieve and
display content on behalf of the user.
But as long as such aggregations were
served from portal sites, users still
needed to explicitly launch a Web
browser in order to access their in-
formation. This turned out to be an
inconvenience for frequently viewed
information, motivating the move by
Web developers toward Web gadgets,
small pieces of Web-driven software
that materialize on the user’s desktop
outside the Web browser. Such Web
aggregation has moved over time from
the server to the client where it materi-
alizes as widgets or gadgets.

Viewed this way, Web gadgets are
specialized browsers. Rather than re-
quiring the user to explicitly navigate
to a Web site and drill through its vari-
ous user-interface layers before arriv-
ing at the target screen, these gadgets
automate away a large part of the user
actions by directly embedding the fi-
nal result into the user’s Web environ-
ment. Finally, Web gadgets have es-
caped the confines of the Web browser
to materialize directly on the user’s
desktop. Users no longer had to explic-
itly launch a Web browser to access the
gadgets. However, the gadgets them-
selves continue to be built out of Web
components. As an example, a typical
iGoogle gadget consists of several com-
ponents:

XML. A small XML file encapsulat-
ing metadata about the gadget;

HTML. The markup used to render
the gadget;

CSS. Style rules to specify the final
visual presentation; and

JavaScript. JavaScript functions used
to retrieve and inject the relevant infor-
mation into the HTML DOM before it is
presented to the user.

Web gadgets relying on lightweight
Web APIs, Rich Site Summaries (RSS)
(letters also sometimes used to mean
Really Simple Syndication), and Atom
feeds26 helped the move toward spe-
cialized browsing; retrieving informa-
tion from a Web site did not always
require a live human to directly inter-
act with the user interface. Today, RSS
and Atom feeds form the underpin-
nings of Web APIs for content retriev-
al. In the simplest cases, they enable

Aggregations,
projections,
and mashups
are all a direct
consequence
of the user’s
need to consume
information in
a form that is
most suited to
a given task.

58 communications of the acm | february 2009 | vol. 52 | no. 2

contributed articles

content sites to export a set of article
titles and summaries. In more com-
plex cases, such feeds are used in con-
junction with newer protocols (such
as the Atom Publishing Protocol13)
layered on top of HTTP to expose rich
programmatic access to Web applica-
tions. Together, these various feed-
oriented APIs enable a variety of task-
oriented Web tools ranging from bulk
upload of data to custom information
access. Note that this class of software
services consists entirely of Web com-
ponents.

Web gadgets thus provide special-
ized browsing functionality and are
hosted in a variety of environments
ranging from server-side containers to
client-side user environments. In all
cases, the hosting environment pro-
vides a number of services:

Back end. Access the Web to retrieve, fil-
ter, and format the requisite information;

Front end. Render the formatted in-
formation as HTML for realizing the
final presentation and user interface;

Configuration. Provide the user
interface affordances to allow users
to customize the final experience by
configuring the look and feel of the
interface; such configuration includes
adding, removing, expanding, or col-
lapsing the gadget;

Preferences. Manage user preferenc-
es for gadgets within a container;

Single sign-on. Delegate common
tasks (such as authentication) to the
container, so users do not need to login

to each Web application; and
Caching. Cache content to provide

an optimized browsing experience.
The Web container thus provides

the environment or evaluation context
for Web widgets. I return to this pivotal
role played by such container environ-
ments later when I address the evolv-
ing social Web.

A key aspect of all Web technologies
is that the user has final control over
visual presentation and user interac-
tion. CSS emphasizes the C in Cascad-
ing by enabling users to cascade and
consequently override the visual pre-
sentation chosen by the content cre-
ator. Similarly, scripting makes it pos-
sible for end users to drastically alter
the interaction behavior of Web con-
tent. This flexibility was first leveraged
in 1999 by Emacspeak31; the modules
websearch and url-templates provided
task-oriented Web wizards using REST
APIs and XSLT Web transforms.12 Lat-
er, similar functionality was brought
to mainstream users by Greasemon-
key,27 a Firefox extension enabling
them to attach arbitrary scripts to Web
content. The success of Greasemonkey
has been built upon by projects like
Chickenfoot from MIT25 and CoScrip-
tor from IBM Research,24 both pro-
viding higher-level user automation
when working with Web interfaces.
The ability to inject behavior into Web
pages by scripting the HTML DOM was
also successfully leveraged to create
Google-AxsJAX,11,30 a JavaScript library

that helps developers across the Web
enhance the usability of Web inter-
faces, with special focus on users with
special needs (such as visual and hear-
ing impairment).

Beyond Web 2.0
So here is where we stand:

The Web, which began as a global ˲˲

hypertext system, has evolved into a
distributed application platform de-
livering final-form visual presentation
and user interaction;

The separation between applica-˲˲

tion logic and user interface enables
late binding of the user interface,14,15,32
promising the ability to avoid a one-
size-fits-all user interface;

More than URL-addressable con-˲˲

tent, the Web is a distributed collec-
tion of URL-addressable content and
applications;

It is now possible to create Web ar-˲˲

tifacts built entirely from Web compo-
nents; and

The underlying Web architecture ˲˲

ensures that when created to be URL-
addressable, Web artifacts in turn be-
come the building blocks for the next
set of end-user Web solutions.

I described Web 2.0 earlier as the
result of applying the Web function to
itself, that is, Web 2.0 = Web2 (). Let W
denote the set of all URL-addressable
information. Examining the properties
of today’s Web, we see the following ad-
ditional properties with respect to W:

Aggregation. New Web artifacts can
be created by aggregating existing el-
ements of the Web; when assigned a
URL, such aggregations become ele-
ments of W;

Projections. Information available
on the Web can be filtered to suit the us-
er’s browsing context; such projections
when made URL-addressable them-
selves become elements of W; and

Cross-products. Discrete elements of
W can be integrated into a single view
to create Web mashups.

Note, too, that the notion of Web
mashups can be generalized to cover
cases where one brings together data
from more than a pair of sites. Such
cross-products are not limited to inte-
grating data from multiple sources into
a single view; instead, one can also inte-
grate multiple views of the same piece
of data (such as a visual representation
that displays historical data both as a i

m
a

g
e

 b
y

 S
c

o
t

t
 D

r
a

v
e

s

contributed articles

february 2009 | vol. 52 | no. 2 | communications of the acm 59

table of numbers and as a histogram).
Similarly, a multimodal view of a page,
supporting both visual and spoken in-
teraction, is also just one more type of
view-to-view mashup. Bringing all this
together, we can pose the question:
What is the size of this Web to come? In
theory, we can combine arbitrary sub-
sets of W using the techniques I’ve out-
lined here. Each combination can in
turn be deployed on the Web by mak-
ing it URL-addressable and expressed
mathematically as:

|W|
0

|W|
1

+ + +…+ = 2|W||W|
2

|W|
|W|() () () ()

User-Oriented Web:
A Total Perspective
This number 2|W| is extremely large
and growing quickly as we build on
the success of the Web; here, I denote
this set 2W. Fans of Douglas Adams’s
Hitchhikers Guide To The Galaxy1 prob-
ably feel like they are now well en-
trapped within the total perspective
vortex. But just as in the case of Za-
phod Beeblebrox, the solution is not
to focus on the totality of the Web but
instead on the individual; 2W exists for
the user. As we move to a highly per-
sonalized social Web, each element of
2W exists as it is perceived and used by
a given user.

A significant portion of our social
interaction increasingly happens via
the Web. Note that a large portion of
the impetus for the move from Web 1.0
to Web 2.0 and later to the predicted
2W is due to user needs; aggregations,
projections, and mashups are all a di-
rect consequence of the user’s need to
consume information in a form that
is most suited to a given task. Though
the resulting set 2W might be immense,
most of these elements are relevant
only when used by at least one user.
Users do not use Web artifacts in a
vacuum, but in a given environment or
evaluation context provided by a given
Web container.

Web content when combined is far
more useful than its individual com-
ponents. Likewise, Web applications
used by collaborating users create a
far richer experience than would be
possible if they were used by users in
isolation. Users typically converge on
the use of such artifacts via popular
Web containers, making the various
APIs available by a given container a

9.	B os, B., Lie, H.W., Lilley, C., and Jacobs, I. Cascading
Style Sheets, Level 2 CSS2 Specification. W3C
Recommendation, May 1998; www.w3.org/TR/REC-
CSS2.

10.	C alishain, T. and Dornfest, R. Google Hacks: 100
Industrial-Strength Tips & Tools. O’Reilly Media, Inc.,
Sebastopol, CA, 2003.

11.	C hen, C.L. and Raman, T.V. AxsJAX: A talking
translation bot using Google IM: Bringing Web-2.0
applications to life. In Proceedings of the 2008
International Cross-Disciplinary Workshop on Web
Accessibility, 2008, 54–56.

12.	C lark, J. et al. XSL Transformations Version 1.0. W3C
Recommendation. World Wide Web Consortium, 1999.

13.	 de hOra, B. The Atom Publishing Protocol. 2006;
bitworking.org/projects/atom/.

14.	D ubinko, M. XForms Essentials. O’Reilly Media, Inc.,
Sebastopol, CA, 2003.

15.	D ubinko, M., Klotz, L.L., Merrick, R., and Raman, T.V.
XForms 1.0, W3C Recommendation. World Wide Web
Consortium, Oct. 14, 2003; www.w3.org/TR/xforms.

16.	F ielding, R.T. and Taylor, R.N. Principled design of
the modern Web architecture. ACM Transactions on
Internet Technology 2, 2 (2002), 115–150.

17.	F ielding, R.T. Architectural Styles and the Design of
Network-based Software Architectures, Chapter 5
Representational State Transfer. Ph.D. Dissertation,
University of California, Irvine, 2000.

18.	F lanagan, D. and Novak, G.M. Java-Script: The
definitive guide. Computers in Physics 12, 41 (1998).

19.	G arrett, J.J. Ajax: A New Approach to Web
Applications. White paper, Adaptive Path Inc., 2005.

20.	G raham, W. Facebook API Developers Guide.
firstPress, 2008.

21.	H ickson, I. HTML 5 Working Draft. W3C Working Draft.
World Wide Web Consortium, 2008; www.w3.org/TR/
html5/.

22.	K arp, D.A. eBay Hacks. O’Reilly Media, Inc.,
Sebastopol, CA, 2005.

23.	L e Hors, A., Le Hegaret, P., Wood, L., Nicol, G., Robie, J.,
Champion, M., and Byrne, S. Document Object Model
Level 2 Core Specification. W3C Recommendation.
World Wide Web Consortium, 2000; www.w3.org/TR/
DOM-Level-2-Core.

24.	L eshed, G., Haber, E.M., Matthews, T., and Lau, T.
CoScripter: Automating & sharing how-to knowledge
in the enterprise. In Proceedings of the 26th Annual
SIGCHI Conference on Human Factors in Computing
Systems (2008).

25.	 MIT CSAIL. Automation and customization of
rendered Web pages. In Proceedings of the ACM
Symposium on User Interface Software and
Technology (2005).

26.	N ottingham, M. Atom Syndication Format. Internet
RFC 4287 Internet Engineering Task Force, 2005.

27.	 Pilgrim, M. Greasemonkey Hacks: Tips & Tools for
Remixing the Web with Firefox. O’Reilly Media, Inc.
Sebastopol, CA, 2005.

28.	R aggett, D., Le Hors, A., and Jacobs, I. HTML
4.01 Specification. W3C Recommendation REC-
html401-19991224. World Wide Web Consortium,
Dec. 1999; www.w3.org/TR/ html401.

29.	R aman, T.V. Specialized browsers. Chapter 12 in Web
Accessibility, S. Harper and Y. Yesilada, Eds. Springer,
2008; emacspeak.sf.net/raman/publications/.

30.	R aman, T.V. Cloud computing and equal access for
all. In Proceedings of the 2008 International Cross-
Disciplinary Workshop on Web Accessibility (2008),
1–4.

31.	R aman, T.V. Emacspeak: The complete audio desktop.
In Beautiful Code. O’Reilly Media, Inc., Sebastopol,
CA, 2007.

32.	R aman, T.V. Xforms: XML-Powered Web Forms.
Addison-Wesley Professional, 2003.

33.	R aman, T.V. Emacspeak: Toward the Speech-Enabled
Semantic WWW. 2000; emacspeak.sf.net/raman/.

34.	 van Kesteren, A. and Jackson, D. The XML HTTP
Request Object. W3C Working Draft. World Wide Web
Consortium, 2008; www.w3.org/TR/XMLHttpRequest/.

35.	 World Wide Web Consortium Technical Architecture
Group. Architecture of the World Wide Web. W3C TAG
Finding REC-webarch-20041215, 2004.

36.	Y offie, D.B. and Cusumano, M.A. Judo strategy: The
competitive dynamics of Internet time. Harvard
Business Review 77, 1 (1999), 70–81.

T.V. Raman (raman@google.com) is a research scientist
at Google Research, Mountain View, CA.

© 2009 ACM 0001-0782/09/0200 $5.00

key distinguishing factor with respect
to the types of interactions enabled
within the environment. For exam-
ple, OpenSocial from Google (code.
google.com/apis/opensocial/), which
describes itself as “many sites, one
API,” defines a set of APIs that can be
implemented within a Web container.
These APIs then expose a common set
of services to gadgets being hosted
within the container. Likewise, the
Facebook platform provides an API
for developing gadgets to be hosted in
the Facebook container,20 which can
provide access to a user’s contact list,
enabling the various gadgets within it
to provide an integrated end-user ex-
perience.

Conclusion
The Web has evolved from global hy-
pertext system to distributed platform
for end-user interaction. Users access it
from a variety of devices and rely on late
binding of the user interface to produce
a user experience that is best suited to
a given usage context. With data mov-
ing from individual devices to the Web
cloud, users today have ubiquitous ac-
cess to their data. The separation of the
user interface from the data being pre-
sented enables them to determine how
they interact with the data. With data
and interaction both becoming URL-
addressable, the Web is now evolving
toward enabling users to come togeth-
er to collaborate in ad-hoc groups that
can be created and dismantled with
minimal overhead. Thus, a movement
that started with the creation of three
simple building blocks—URL, HTTP,
HTML—has evolved into the one plat-
form that binds them all. 	

References
1.	A dams, D. The Restaurant at the End of the Universe.

Ballantine Books, 1980.
2.	A pparao, V., Byrne, S., Champion, M., Isaacs, S.,

Jacobs, I., Hors, A.L., Nicol, G., Robie, J., Sutor, R.,
Wilson, C. et al. Document Object Model (DOM) Level 1
Specification. W3C Recommendation, World Wide Web
Consortium, 1998; www.w3.org/TR/REC-DOM-Level-1.

3.	B ausch, P. Yahoo! Hacks. O’Reilly Media, Inc.,
Sebastopol, CA, 2005.

4.	B ausch, P. Amazon Hacks: 100 Industrial-Strength
Tips & Tools. O’Reilly Media, Inc., Sebastopol, CA,
2003.

5.	B erners-Lee, T., Fielding, R., and Frystyk, H. Hypertext
Transfer Protocol 1.0, 1996; www.w3.org/Protocols/
Specs.html#HTTP10.

6.	B erners-Lee, T. Universal Resource Identifiers in
WWW. Internet Engineering Task Force, 1994; www.
w3.org/Addressing/rfc1630.txt.

7.	B erners-Lee, T., Masinter, L., and McCahill, M. Uniform
Resource Locators. Internet Engineering Task Force
Working Draft 21, 1994; www.ietf.org/rfc/rfc1738.txt.

8.	B erners-Lee, T. and Connolly, D. Hypertext Markup
Language, Internet Working Draft 13, 1993.

