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Simple shapes
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Metric spaces

Definition
Let X be a non-empty set. A metric (or a distance function) on
X is a map d : X ×X → R which satisfied the following
properties:

1 d is positive definite: for every x, y ∈ X, d(x, y) ≥ 0 and
d(x, y) = 0 if and only if x = y.

2 d is symmetric: for every x, y ∈ X, d(x, y) = d(y, x).
3 d satisfies the triangle inequality: for every x, y, z ∈ X

d(x, z) ≤ d(x, y) + d(y, z)
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Examples of metrics on Rn

The Euclidean metric For x = (x1, . . . , xn) and y = (y1, . . . , yn)
in Rn we define

d2(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2

The taxi-cab metric, or the `1-metric:

d1(x, y) = |x1 − y1|+ · · ·+ |xn + yn|

The supremum metric:

d∞(x, y) = max{|x1 − y1|, . . . , |xn + yn|}
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Metric determines shape
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Analysis on sets

Let X be a countable set. A Hilbert space canonically
associated with X:

`2(X) =

{
f : X → C |

∑
x∈X
|f(x)|2 <∞

}

Canonical orthonormal basis: {δx}, f =
∑

x∈X fxδx,
fx ∈ C.
Transformations of X give rise to operators on `2(X), e.g.,
a bijection φ : X → X becomes a unitary operator

Uφ :
∑

fxδx 7→
∑

fxδφ(x)
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Graphs

Graphs provide natural examples of discrete metric spaces:
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Path metric

In a graph, it is natural to define a metric between points to be
the length of the shortest path between them:
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Large scale view

There is no structure theory for discrete metric spaces;
Key features of a space can be determined by studying it
from a ‘large distance’
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Metrics and function: Network of resistors
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Metrics and function

A distance between
two points can be
defined by measuring
voltage drop resulting
from passing 1 amp of
current between them.
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Greedy routing

The problem of
finding the most
efficient route between
two points depends on
the function of the
network.
Picture from physorg.com
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Topology of data

From: Annals of Statistics, Vol. 13, No. 2 June, 1985

Central core: Normal patients

Lobes: Type I and Type II diabetes, respectively

Conclusion: There are two essentially distinct forms of the
disease, one early onset and the other adult onset
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Mathematics for digital economy
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Example: Renormalisation

The essence of the topological
approach is to find the
essential core of the system.

Subgraphs consisting of vertices of 
valency at least: 1,2,3,4.
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Basic tools

Definition
Let (X, dX) and (Y, dY ) be metric spaces. A map φ : X → Y is
called distance-preserving if, and only if,
dY (φ(x), φ(y)) = dX(x, y) for all x, y ∈ X.
An isometry is a distance-preserving bijection between two
metric spaces.

Example

φ : R2 → C by (a, b) 7→ a+ bi. This is an isometry if R2 is
equipped with the euclidean metric.
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Coarse maps

Definition
A map f : X → Y of metric spaces is coarse if there exist two
functions ρ± : R→ R, ρ±(r)→∞ as r →∞ such that for all
x, y ∈ X

ρ−(dX(x, y)) ≤ dY (f(x), f(y)) ≤ ρ+(dX(x, y))

Coarse maps have a controlled amount of distortion. Maps into
spaces of known geometry (e.g., Hilbert spaces) are particularly
useful.
The three metrics d∞, d1, d2 on Rn are coarsely equivalent but
not isometric.
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